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Abstract 

The present work is concerned with the determination of the impact of circular 
cylinders on the dilution of density currents, motivated by the planned errection of 
offshore wind farms in the Baltic Sea. The analysis is mainly based on fully three-
dimensional numerical simulations and the physical background of the model with 
special emphasis on the nature and modeling of turbulence is explained in detail first. 
Additionally the numerical methods used to solve the governing equations are 
shortly described. 

The core of the work begins with a discussion of the basic principles of the cylinder 
flow and a first validation of the numerical model with laboratory measurements 
from the literature for the neutral density shear-free flow around a circular cylinder. 
Afterwards the general effects of stratification on the flow will be introduced and 
essential parameters to describe these effects are worked out. By the example of  
wind-induced mixing of a stably stratified fluid essential parameters for the 
numerical simulation of density currents are determined. A thoroughly derived 
depth-integrated theory provides the basis for an analysis of undisturbed density 
currents and for the validation of the numerical model to simulate these currents. 
Additional simulations of fundamental flow configurations and the comparison with 
field measurements in the Arkona Basin in the Baltic Sea provide the necessary 
credibility for the present numerical model to simulate the additional cylinder 
induced entrainment rates. 

The impact of a circular cylinder on the dilution of a density current is finally 
investigated by numerical simulations on a natural scale. The resulting flow field, 
entrainment rates and mixing efficiencies are analyzed and the influence of the 
governing parameters for the flow are investigated. The cylinder Reynolds number 
in the present order of magnitude shows up to be an unimportant parameter but 
entrainment clearly depends on the densimetric Froude number and the current depth 
to cylinder diameter ratio. If earth rotation and Coriolis forces are considered the 
Ekman number is a further governing parameter. By a principal analysis it is shown 
that the local impact of the cylinder is quite significant but the global effect of 
offshore wind farms on density currents in the Baltic Sea turns out to be rather small. 



 

Zusammenfassung 

Die vorliegende Arbeit befasst sich mit der Bestimmung des Einflusses von 
Kreiszylindern auf die Durchmischung von Dichteströmungen, motiviert durch die 
geplante Errichtung von Offshore Windparks in der Ostsee. Der Schwerpunkt liegt 
auf voll dreidimensionalen numerischen Simulationen, so dass zunächst die 
physikalischen Grundlagen des Modells und insbesondere das Phänomen von 
Turbulenz und deren Modellierung ausführlich erläutert werden. Zusätzlich werden 
die numerischen Methoden zur Lösung der Grundgleichungen kurz beschrieben. 

Der eigentliche Kern der Arbeit beginnt mit einer Betrachtung der grundlegenden 
Prinzipien der Zylinderumströmung und einer ersten Validierung des numerischen 
Modells anhand von Labormessungen aus der Literatur für eine dichteneutrale, 
ungescherte Strömung um einen Kreiszylinder. Anschließend wird der generelle 
Einfluss einer Dichteschichtung auf die Strömung vorgestellt und die wesentlichen 
Parameter zu deren Beschreibung herausgearbeitet. Anhand der windinduzierten 
Durchmischung einer stabilen Dichteschichtung werden entscheidende Größen für 
die numerische Simulation von Dichteströmungen bestimmt. Die Herleitung einer 
tiefenintegrierten Theorie bildet schließlich die Grundlage für eine prinzipielle 
Analyse unbeeinflusster Dichteströmungen und für die Validierung des numerischen 
Modells. Zusätzliche Prinzipstudien und der Vergleich mit Naturmessungen im 
Arkona Becken in der Ostsee geben dem verwendeten numerischen Modell die 
nötige Glaubwürdigkeit für die Simulationen der zylinderinduzierten Einmischung. 

Der Einfluss eines Kreiszylinders auf die Durchmischung einer Dichteströmung 
wird schließlich anhand numerischer Simulationen im Naturmaßstab untersucht. Das 
Strömungsfeld, Einmischungsraten und Mischungseffizienz werden analysiert und 
der Einfluss der bestimmenden Parameter wird untersucht. Dabei stellt sich heraus, 
dass die Reynoldszahl in der vorliegenden Größenordnung einen unbedeutenden 
Parameter darstellt, aber die Einmischung eindeutig von der densimetrischen 
Froudezahl und dem Verhältnis zwischen der Dicke der Strömung und dem 
Zylinderdurchmesser abhängt. Die Untersuchung zeigt, dass die lokale Einwirkung 
des Zylinders zwar signifikant ist, der globale Einfluss von Offshore Windparks auf 
Dichteströmungen in der Ostsee aber eher gering ausfällt. 
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1 Introduction 

1.1 General 

Density currents also referred to as gravity currents or buoyancy currents are a 
common phenomenon in nature and man-made situations. These currents are driven 
by buoyancy when an external force field like gravity acts on small differences in 
density in liquids or gases. From this definition it is apparent that all three 
terminologies above are comparably meaningful. Although there is some tendency 
in the literature to use the synonym ‘gravity current’, for the present thesis ‘density 
current’ has been preferred. Not only because a quick search on www.google.com 
supports this choice 1 but much more because it is felt that gravity is only one 
possible (even though the most common) source for an external force field while the 
difference in density is a unique property of these currents. 

A density difference can either exist between two fluids or between different parts of 
the same fluid caused by a difference in temperature, salinity, or concentration of 
suspended sediment. A nice example from everyday life can be observed when a 
window or door is opened on a cold day and the warm lighter air from inside flows 
out through the upper part of the opening while below the cold heavier air from 
outside flows into the room. It can be recommended to try out this interesting 
experiment at home by detecting the current with a candle or puffs of smoke. 

Anyway, from a scientific point of view this example might be of rather limited 
interest but there are many density currents in natural situations and industrial 
applications which have received much attention in the past and might gain even 
more in the future. The pioneering experimental work of Ellison & Turner (1959), 
for instance, was inspired by the desire for a theoretical description of methane gas 

                                                                 

1  about 160000 results for "density current", 

 about   54900 results for "gravity current". 

http://www.google.com/�
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climbing up the roof of coal mines. Many other examples of density current 
phenomena are discussed in the review work of Simpson (1987). Atmospheric 
currents like thunderstorm outflows which result from the cold air in the core of the 
thunderstorm propagating into the warmer surroundings or sea breeze fronts 
occurring when the air above the land is heated by the sun and cooler air from the 
sea flows inland. Oceanic currents like the well known Gulf Stream or turbidity 
currents caused by the slumping of sediments that have accumulated at the head of a 
submarine canyon. Comparable to the latter are volcanic lava flows or avalanches 
which can also be considered as density currents, although here the terminology 
gravity current might be better suited. 

1.2 Motivation 

The major emphasis of the present thesis lies on density currents in the Baltic Sea 
which occur a few times per year. A map of the Baltic Sea is shown in Figure 1.1 
where also the presumable pathways of the density currents are sketched by the full 
and dashed lines. Before the nature of these currents and the motivation for this 
thesis is briefly discussed, however, it might be useful first to make some general 
comments on the characteristics of the Baltic Sea. 

The Baltic Sea can be regarded as the largest Fjord in the world and as such it is an 
enclosed brackish inland sea connected to the North Sea by the Danish straits made 
up of Kattegat and Skagerrag. Brackish waters are saltier than fresh water but less 
salty than sea water. An enclosed Fjord is constantly filled by fresh water through 
river runoff from the surrounding continent and at the same time it is connected to 
the salty waters of the open ocean. The average salinity in the upper layers of the 
Baltic Sea is about 8 PSU1 and is a result of the mixing process between the fresh 
river water (and rainfall) with the saline water from the open ocean with an average 
salinity of about 35 PSU.  

                                                                 

1  PSU: Practical Salinity Unit. 1 PSU corresponds to about 1 ‰ salt which is the former 
definition for salinity, see chapter 2.5 for details.  
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Figure 1.1: Map of the Baltic Sea (©2007 Google™) with sketched pathways of 
dense bottom currents.  

In a usual situation the lighter brackish waters of the Baltic Sea flow out to the North 
Sea in a surface layer while the heavier ocean waters enter the Baltic Sea as a dense 
bottom current. These currents however, are most intense in the Danish straits where 
they are subject to intense mixing and are constantly diluted by the lighter brackish 
waters above. Due to the resulting small density difference in height of Darss and 
Drogden Sill and the Arkona Basin, respectively these currents will not penetrate far 
into the bottom layers of the central Baltic Sea but are very soon completely mixed 
with the almost stagnant lighter upper layer. The dashed lines in Figure 1.1 are 
therefore not representative for the usual situation where all dynamics are more or 
less restricted to the surface layer. Much more they correspond to special situations 
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which are very intensive inflow events occurring on an inter-annual time scale 
(major inflows) or slightly less intense inflow events occurring a few times per year 
(medium inflows). Both are important for the natural chemical and biological 
balance of the central Baltic Sea, as to be discussed next. 

Typical for the Baltic Sea is the topographical subdivision into basins that have 
formed during the last ice age. From the topographical map of the southern part of 
the Baltic Sea in Figure 1.2 the Arkona Basin, Bornholm Basin and Gotland Basin 
denoted in Figure 1.1 can be clearly identified by the contour lines. It is further seen 
that the average depth in the Arkona Basin is about 50 m, in the Bornholm Basin 
about 100 m and in the Gotland Basin, representative for the central Baltic Sea, it is 
around 200 m.  

 
Figure 1.2: Topography contours for the southern Baltic Sea.  
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As mentioned above in a normal situation all dynamics are restricted to the surface 
layer and the bottom waters below remain more or less untouched. This leads to the 
formation of a halocline (large salinity (density) change over small vertical distance) 
which further prevents mixing of the bottom layers. The stagnant waters below the 
halocline suffer from an oxygen deficit caused by mineralization of organic matter 
as recently discussed for the eastern Gotland basin by Nausch et al. (2003). The only 
mechanism to ventilate the halocline and replace the deep waters in the central 
basins of the Baltic Sea with oxygen rich waters from the North Sea are major and 
medium inflow events which have been intensively investigated in the past years 
(e.g. Matthäus & Franck (1992), Feistel et al. (2003), Burchard et al. (2005)). 

Unlike in the normal situation the more intense events are driven by a sea level 
difference between the Kattegat and the Baltic Sea such that the saline North Sea 
water is advected towards and over Darss and Drogden Sill and continues to flow 
into the Arkona basin. Following the definitions of Matthäus & Franck (1992) the 
density difference between these current and the ambient Baltic Sea at the sills must 
be at least about 7 kg/m³ and is usually 30 – 70 % higher. As the current travels 
down the depth contours into the Arkona Basin and further on, it is constantly 
diluted by the surrounding lighter waters such that the density difference and hence 
the driving force for the current is steadily decreasing. 

The density anomaly of medium inflow events often ranges between 7 and 8 kg/m³ 
in the Bornholmgatt, the connection between the Arkona Basin and Bornholm Basin 
(see Figure 1.1). This is regarded to be sufficient for the current to further penetrate 
into the intermediate layers of the Bornholm Basin and probably even reach the 
eastern Gotland Basin (Burchard et al. (2005)). Although the occurrence of major 
inflow events slightly decreased over the last decades (Matthäus & Franck (1992), 
Feistel et al. (2003)) it can be assumed that the unaffected ecosystem of the Baltic 
Sea still benefits from a frequent refreshment of the deep waters of the Baltic proper 
by oxygen rich bottom currents from the North Sea. 

However, in line with the European wide pushing of renewable energies several 
offshore wind energy farms are planned to be installed in the Baltic Sea especially 
within the Arkona Basin. Thus, the question arises how these man made structures 
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will enhance the mixing of dense bottom currents passing the wind farms and 
consequently influence the ecological balance of the central Baltic Sea. This 
question is the keynote for the present thesis and even if in principle several 
constructions are thinkable for the foundation of an offshore wind energy device 
(see e.g. GIGAWIND (2004)) the major emphasis here is on monopiles which are 
further idealized as a circular cylinder. This alleged simplification is not only made 
as monopiles are the most common foundation but much more because it provides 
the best way to generally analyze the basic processes involved and further allows for 
a transformation of the results to other situations.  

1.3 Structure of the thesis 

In order to investigate the influence of circular cylinders on the mixing of density 
currents in this thesis only numerical methods are used. The general physical 
background and the governing differential equations for these models are presented 
in chapter 2. Turbulence is the major cause for mixing and as such it plays a major 
role in the present work. Due to its randomness and the small scales involved it is 
impossible to directly account for turbulence in a numerical model. Thus, chapter 3 
starts with an introduction of the nature of turbulence which is followed by a 
thorough discussion of the state of the art in turbulence modeling with emphasis on 
the Reynolds averaged Navier-Stokes equations which are the base for this thesis. 
The numerical methods to solve the governing equations are subsequently illustrated 
in chapter 4. 

The next chapters are dedicated to the validation of the numerical model and the 
introduction to the relevant physical processes of the present problem. Chapter 5 
deals with the unstratified flow around a circular cylinder. After a summary of the 
characteristics of this special kind of flow numerical simulations with the present 
model are compared to data from the literature and the advantages and drawbacks of 
different turbulence models will be worked out. In chapter 6 the influence of 
stratification is discussed and relevant parameters for stratified flows are introduced. 
The concept of entrainment to describe the effect of mixing is explained and finally 
the numerical model is validated against a simple wind entrainment experiment in 
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order to show its general capability for the simulation of stratified flows. This 
validation will also be used to show the strengths and weaknesses of the individual 
turbulence models for stratified flows and to get a first hint for the appropriate 
model in order to simulate the flow of density currents around a circular cylinder. 

However, before the effects of cylindrical structures on density currents are analyzed 
in detail it is useful first to understand the physics of unaffected natural density 
currents and approve the ability of the numerical model to simulate them. This is 
done in chapter 7 where a depth integrated theory for undisturbed density currents 
under the influence of Coriolis forces is derived and the numerical model is 
successfully validated against this theory. A comparison of the numerical results 
with measurements of a density current in the Arkona Basin north of Kriegers Flak 
will provide further credibility into the numerical model, but it will also turn out that 
the two-equation turbulence models used here provide unphysical results if Coriolis 
forces are not present. However, in view of a general analysis of the influence of a 
circular cylinder on density currents it is desirable to neglect Coriolis forces at first 
and it will finally be shown that the discrepancies of the two-equation models can be 
tolerated if only a part of the current is regarded in a finite three-dimensional 
channel. 

After the physical background has been thoroughly discussed and the numerical 
model has been extensively validated against theory and measurements chapter 8 at 
last deals with additional entrainment induced by circular cylinders. First Coriolis 
forces are neglected to analyze the basic flow features and the principal mechanisms 
of entrainment behind the cylinder without the effect of secondary currents in the 
undisturbed flow field. The results are influenced by many parameters the most 
important being the Froude number and the ratio of current depth to cylinder 
diameter. As the numerical simulations are computationally very expensive it is not 
possible to investigate all aspects in detail but it was tried to work out the basic 
principles by representative examples. Finally some additional simulations in a 
rotating frame of reference with the effect of Coriolis forces will show that the flow 
topology behind the cylinder is indeed much more complex but the entrainment rates 
are comparable to those presented before in a fixed frame without Coriolis forces. 
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1.4 Notation 

The mathematical expressions to explain the physics in this thesis are all derived in a 
Eulerian frame of reference, i.e. all variables like velocity, pressure or salinity 
depend on time and space and spatial coordinates are fixed. Assuming a Cartesian 
coordinate system with coordinates x, y, and z the velocity in x-direction for instance 
is actually u(t, x, y, z). However, to make the equations better readable the 
dependency on time and space is taken to be self evident and the expression in 
brackets is omitted. In this case the velocities in x-, y-, and z-direction are usually 
denoted by u, v, and w, but the resulting equations can still be quite long and hard to 
interpret. Therefore unless not otherwise mentioned index notation is exclusively 
used to further condense the writing. By that the spatial coordinates x, y, z are 
replaced by indices 1, 2, 3 and a vector (e.g. the velocity vector) can be written as 

[ ] [ ]1 2 3, , , , , , ,
TT T

i x y zu u u u u u u u v w⎡ ⎤= = =⎣ ⎦ , 

while a matrix (e.g. the stress tensor in the momentum balance (2.2)) simplifies to 

11 12 13

21 22 23

31 32 33

xx xy xz

ij yx yy yz

zx yz zz

τ τ τ τ τ τ
τ τ τ τ τ τ τ

τ τ τ τ τ τ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Index notation allows for further simplifications if Einstein summation convention is 
used which means that if an index variable appears twice it implies summing up 
over all possible index values. Taking the incompressible mass balance (2.6) as an 
example it appears that 

1 2 3

1 2 3

j

j

u u u u u v w
x x x x x y z
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

, 

which is a significant reduction of the complete expression.  
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2 Theory  

2.1 Governing equations 

Any flow is governed by the principle of mass balance and momentum balance. In 
the most general form these are expressed as: 

0
ρρ ∂∂

+ =
∂ ∂

j

j

u
t x

, (2.1)

i j iji
i i

j j i

u uu p g F
t x x x

ρ τρ ρ
∂ ∂∂ ∂

+ = − + +
∂ ∂ ∂ ∂

, (2.2)

where 

ρ : fluid density [kg/m³] 
u : velocity [m/s] 
τij : stress tensor [N/m²] 
p : pressure [N/m²] 
g : external force per unit mass (e.g. gravity) [m/s²] 
Sm : mass source [kg/m³s] 
F : external body force [N/m³]. 

 

If the fluid is assumed to be Newtonian, such as air and water, the stress tensor τij 
linearly depends on the rate of strain in the fluid with the constant of proportionality 
being the molecular viscosity µ of the fluid. Hence, the stress tensor can be 
expressed as 

2
3

ji k
ij ij

j i k

uu u
x x x

τ μ μ δ
⎛ ⎞∂∂ ∂

= + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
. (2.3)
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where the first term on the right hand side is given through twice the rate of strain 
tensor and the second term is governed by the volumetric strain rate that will vanish 
under the incompressibility assumption as shown in the next section. The rate of 
strain is a symmetric tensor given by 

1
2

ji
ij

j i

uuS
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. (2.4)

The molecular viscosity µ as well as the density ρ are actually functions of the local 
thermodynamic state, i.e. pressure and temperature. Any other dissolved or 
undissolved quantity like salt or sediments, respectively, will also influence the fluid 
properties. 

Viscosity varies the strongest with temperature for most fluids. For example the 
viscosity of water decreases at a rate of about 3 % per degree temperature rise and 
for air it increases by about 0.3 % per degree rise. However, if temperature 
differences are small within the fluid, then µ can assumed to be constant and taken 
outside the derivative in (2.2). It should be noted that the influence of the molecular 
viscosity on the flow decreases with increasing turbulence intensity and hence can 
be even completely neglected in medium to strong turbulent flows (cf. chapter 3). 

Equations (2.1) and (2.2) are the most general form of the Navier-Stokes equations 
as derived independently by Claude Louis Navier in 1822 and George Gabriel 
Stokes in 1845. In the following some simplifications to these equations will be 
introduced and some extensions regarding gravity currents are presented to finally 
arrive at the set of governing equations relevant in this thesis. 

2.2 Incompressibility 

To investigate the effect of incompressibility on the governing equations it is useful 
to start with rewriting the conservation of mass equation (2.1) in terms of a moving 
(Lagrangian) frame of reference as: 
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1 0j

j

uD
Dt x
ρ

ρ
∂

+ =
∂

. (2.5)

It becomes clear that density is only important for mass conservation if its material 
derivative, i.e. the rate of change following a fluid particle, per unit mass has the 
same order of magnitude as the divergence of velocity. Except for pressure all other 
density influencing quantities are transported by the flow and will never yield large 
enough density gradients. However, pressure variations can be quite significant 
locally, provided the Mach number, which expresses the relation between the fluid 
velocity and the speed of sound, is high enough. High enough in this context means 
that the fluid velocity is at most 30 % of the speed of sound. For example, in air 
maximum velocities of 100 m/s still allow for the incompressibility assumption and 
water remains incompressible even up to 300 m/s. Since all considered velocities 
here are much smaller the fluids can be regarded as incompressible without 
objection. 

If the left hand side of equation (2.2) is further simplified by use of (2.1) the mass 
and momentum balance for an incompressible fluid can be written as: 

0j

j

u
x
∂

=
∂

, (2.6)

ji i i
j i i

j j j i i

uu u u pu g F
t x x x x x

ρ μ ρ
⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂ ∂ ∂

+ = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
, (2.7)

Due to the incompressibility assumption density completely disappears from the 
mass balance (2.6). The major impact on the momentum equation (2.7) comes from 
the stress tensor (2.3) where the second term on the right hand side vanished because 
of the incompressible mass balance. All other terms remain unaffected by the 
incompressibility assumption and density is still present as a flow variable. However, 
also the momentum balance can be further simplified under the assumption that 
density changes are small as will now be explained in the next section. 
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2.3 Boussinesq approximation 

By the incompressibility assumption density disappeared in the mass balance 
equation whereas it is still kept in the momentum balance. Boussinesq (1903) 
suggested that if density changes are small they can be neglected except in the 
gravity term. 

If a state of reference is assumed with constant density ρ0 everywhere and a 
reference pressure p0 given by 0 0jp x gρ∂ ∂ = , density and pressure can be written 
as 0ρ ρ ρ= + Δ and 0p p p= + Δ , where ρΔ and pΔ  are small perturbations from the 
state of reference. Subtracting this state from (2.7) and assuming µ to be constant 
one obtains 

0 0 0 0

1 11 ji i i
j i i

j j j i i

uu u u pu g F
t x x x x x

ρ ρν
ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞∂⎛ ⎞Δ ∂ ∂ ∂ ∂ ∂Δ Δ
+ + = + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

, (2.8)

where ν = µ/ρ0 is the kinematic viscosity. 

From (2.8) it becomes clear that small changes in density only slightly alter the 
inertia terms on the left hand side and can be neglected there. However, together 
with gravity density differences are very important and cannot be neglected. They 
define the buoyancy force ( )0 igρ ρΔ  which e.g. drives the convective motion if a 
layer of fluid is heated. For a density current it can be seen that it obeys exactly the 
same principles like open channel flow except for the fact that everything does not 
happen under full gravity but in a reduced gravity field as expressed by the 
buoyancy force term. Provided mixing with the ambient fluid is small (for open 
channel flow it is actually zero) all well known phenomena like hydraulic jumps or 
backwater curves can be transferred to density currents with the only difference of 
enlarged length and time scales. 

Reintroducing the state of reference in (2.8), the Navier-Stokes equations under the 
Boussinesq assumption can be written as: 
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0j

j

u
x
∂

=
∂

, (2.9)

2

0 0 0

1 1i i i
j i i

j j j i

u u u pu g F
t x x x x

ρν
ρ ρ ρ

∂ ∂ ∂ ∂
+ − = − + +

∂ ∂ ∂ ∂ ∂
, (2.10)

The viscous stress term has been simplified making use of the incompressible mass 
balance (2.9). Then it has been brought to the left hand side of (2.10) in order to 
show that the momentum balance can be interpreted as a transport equation in which 
momentum is transported by advection and diffusion and altered by source and sink 
terms on the right hand side. The kinematic viscosity ν = µ/ρ0 thus plays the role of a 
diffusivity for momentum. 

2.4 Rotating frame of reference 

The equations of motion as derived so far are valid in a fixed or inertial frame of 
reference. However, one often is confronted with a rotating reference frame like in 
engineering applications with impellers in mixing tanks or rotating turbo machinery 
blades or, as in the present case, in geophysics with large scale flows on the rotating 
earth. The coordinate system which is assumed here is fixed on the earth surface 
with the x-axis pointing eastwards, the y-axis pointing northwards and the z-axis 
pointing vertically upwards. The speed of rotation is defined by the angular velocity 
of the earth which is approximately 

52 17.2921 10  
86164 s s

πω −= = ⋅ . (2.11)

As sketched in Figure 2.1 the origin of the inertial coordinate system (index i) is 
assumed to be located in the geocenter and the position vector rG is pointing to the 
rotating coordinate system (index r). Any vector ( )iφ

G
in the inertial coordinate 

system is related to the vector ( )rφ
G

in the rotating coordinate system by 

( ) ( )i r rφ φ ω= + ×
G G G G . (2.12)
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Furthermore, the rate of change of any vector in the systems obeys 

( ) ( )( ) ( )
( )

i ri i
id d

dt dt
φ φ ω φ

⎛ ⎞ ⎛ ⎞
= + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G GG . (2.13)

 
Figure 2.1: Definition sketch of the rotating coordinate system on the earth. 

Applying (2.13) on the velocity vector and using relation (2.12) one obtains 

( ) ( )

( )

( )( ) ( )( )
( )

( ) ( ) ( )( )
( )

ri ri
r

r r rr
r

d u rd u u r
dt dt

d u d dr u r
dt dt dt

ω
ω ω

ω ωω ω ω ω

⎛ ⎞+ ×⎛ ⎞ ⎜ ⎟= + × + ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + × + × + × + × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

GG GG G GG G

G GG G G G GG G G
(2.14)

Assuming that the angular velocity ω to be constant in time (which is true for the 
rotating earth) and noting that the rate of change of position vector rG is given by the 
velocity vector ( )ruG in the rotating frame of reference, then (2.14) becomes 

( )
( ) ( )( ) ( )

( )2
r ir i

rd u d u u r
dt dt

ω ω ω
⎛ ⎞ ⎛ ⎞

= − × − × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G G G G GG G . (2.15)
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In a rotating frame of reference a fluid particle experiences two fictitious forces, the 
Coriolis force acting perpendicular to the path of motion and the centrifugal force 
acting perpendicular to the axis of rotation. The latter is zero at the poles, has its 
maximum at the equator and generally reduces gravity. However, the maximum 
centrifugal force (per unit mass) is 2 -10 37.2921 10 6378 10 0.0339rω = ⋅ ⋅ ⋅ = m/s² at 
the equator. Hence, compared to the standard acceleration of gravity which is much 
more than two orders of magnitude larger (g = 9.80655 m/s²) it can be neglected 
without objection. 

The same argumentation applies to the vertical component of the Coriolis force. 
Neglecting vertical velocities and expressing the angular velocity vector in terms of 
latitude the Coriolis force (per unit volume) is written as 

( )
( )
2 sin

2 2 sin
0

cor

v
F u u

ω θ
ρω ρ ω θ

⎡ ⎤
⎢ ⎥= − × = −⎢ ⎥
⎢ ⎥⎣ ⎦

G G . (2.16)

As sketched in Figure 2.1 the angular velocity vector points out of the ground at the 
North Pole. Thus, the angular velocity is positive in northern and negative in the 
southern hemisphere and (2.16) shows that a current north of the equator is deflected 
to the right and south of the equator to the left. 

Introducing the Coriolis parameter (also known as Coriolis frequency) 

2 sinf ω θ=  (2.17)

and the Coriolis tensor 

0 0
0 0

0 0 0
ij

f
F f

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, (2.18)

the Navier-Stokes equations under the Boussinesq assumption on the rotating earth 
finally become: 
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0j

j

u
x
∂

=
∂

, (2.19)

2

0 0

1i i i
j i ij j

j j j i

u u u pu g F u
t x x x x

ρν
ρ ρ

∂ ∂ ∂ ∂
+ − = − + +

∂ ∂ ∂ ∂ ∂
, (2.20)

where density differences in the Coriolis term have been neglected for the same 
reason that applied to the inertia terms in section 2.3. 

2.5 Equation of state 

As mentioned above, the density of a fluid or gas is determined by pressure and 
temperature as well as dissolved substances like salt or undissolved materials like 
suspended sediments. What is still missing, however, is a functional relationship 
between the governing quantities and density. 

First of all, it should be ascertained which quantities are relevant for density changes 
in the present case. Starting with pressure it was already assumed in section 2.2 that 
a fluid is incompressible unless the Mach number does not exceed the threshold 
value of 0.3. Strictly speaking, however, this is not the only criterion as actually 
every medium is compressible if pressure is large enough. The static pressure 
increases with depth according to 

dp g
dz

ρ= − . (2.21)

With the speed of sound given by 

2 dpc
dρ

= , (2.22)

the increase of density per unit mass with depth can be expressed as 

2 2

1 1d dp g
dz c dz c
ρ

ρ ρ
= = − . (2.23)
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A 10 % density change for air (c ≈ 333 m/s) requires a depth of about 1 km. For sea 
water (c ≈ 1500 m/s) the according depth would even be more than 20 km which 
shows that in the present case the incompressibility assumption indeed holds and 
density variations are pressure independent. 

Suspended sediments may severely increase the density of a fluid which can be 
determined by a mixing calculation as 

0
0

S
S

S

Cρ ρρ ρ
ρ
−

= +  (2.24)

where ρS is the dry density of the suspended material and CS the concentration in 
mass per volume. A concentration of 1 kg/m³ sediment with a dry density of, say, 
ρS = 2000 kg/m³ thus would increase water density by about 0.5 ‰. However, as 
sediment transport is not regarded in this thesis its influence on density can be 
neglected, too. 

The relation between density and temperature is given through a thermal expansion 
coefficient given by 

1

pT
ρβ

ρ
∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

, (2.25)

where index p denotes that the partial derivative is taken at constant pressure. For an 
ideal gas β is simply 1/T. For fluids like water, however, gas dynamics do not apply 
and the relationship must be determined empirically as is done in the Joint Panel on 
Oceanographic Tables and Standards of the UNESCO (1987) where density is 
defined as a fifth order polynomial of temperature: 

2 3 4 5
0 1 2 3 4 5( , )S T a a T a T a T a T a Tρ = + + + + + , (2.26)

with 

a0 =   999.842594, a1 =   6.793952 · 10-2, a2 = −9.095290 · 10-3, 

a3 =   1.001685 · 10-4, a4 = −1.120083 · 10-6, a5 =   6.536332 · 10-9. 
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For salt, which can only be dissolved in fluids, the same difficulty arises and a 
relationship between density and salinity can only be given empirically. The 
functional form for density depending on temperature and salinity proposed by 
UNESCO (1980a) is 

( ) ( )2 3 4 2 3 2 2
0 1 2 3 4 0 1 2 0( , ) ( )S T T b bT b T b T b T S c c T c T S d Sρ ρ= + + + + + + + + + (2.27)

with 

b0 =   8.24493 · 10-4, b1 = −4.0899 · 10-3, b2 =   7.6438 · 10-5, 

b3 = −8.24670 · 10-7, b4 =    5.3875 · 10-9, c0 = −5.7247 · 10-3, 

c1 =   1.02270 · 10-4, c2 = −1.6546 · 10-6, c3 =   4.8314 · 10-4. 

The unit for temperature is centigrade and salinity is given in PSU which is the 
Practical Salinity Unit also defined by UNESCO (1980a,b) as the electrical 
conductivity ratio of a sea water sample to a standard potassium chloride (KCl) 
solution. As a rule of thumb it can be kept in mind that 1 PSU approximately 
corresponds to 1 g of salt per liter solution. 

The functional relationship (2.27) is displayed in Figure 2.2 on the next page. Three 
distinct features can be deduced from the graphical representation of the dependency 
of density from temperature and salinity: 

• Density decreases with increasing temperature and increases with 
increasing salinity. The influence of temperature is much less than that of 
salinity. 

• For low salinity and low temperatures the decrease of density with 
increasing temperature is rather small. In fact, for very low salinity density 
even increases below 4 °C. 

• While the relationship between density and temperature is quite nonlinear 
the increase with salinity is almost linear as can be estimated by the almost 
constant distance between the contour lines. 
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Figure 2.2: Density of water in kg/m³ as function of temperature and salinity. 

2.6 Transport equations 

Up to this point the governing equations are almost complete. Mass and momentum 
are conserved under the assumption of incompressibility and moderate density 
changes which can be determined by temperature and salinity. However, 
temperature and salinity are not constant but are transported with the flow. Hence, in 
addition to the Navier-Stokes equations further transport equations for temperature 
and salinity must be defined in order to close the problem. 

A transport equation for temperature can be formally derived from the first law of 
thermodynamics, stating that the rate of change of stored energy equals the sum of 
heat addition and rate of rate of work done to a material volume. Writing this 
balance in differential form and subtracting the kinetic energy equation (3.4) which 
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will be derived in the next chapter, one obtains the balance equation for internal 
energy (for incompressible flows): 

j
j

j j

q
e u e

t x x
ρ ε
⎛ ⎞ ∂∂ ∂

+ = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
, (2.28)

where e is the internal energy and qj is the heat flux. Following the Fourier law the 
heat flux is proportional to the temperature gradient 

i
i

Tq
x

λ ∂= −
∂

, (2.29)

where the constant of proportionality λ is the thermal conductivity, which generally 
varies with temperature. However, as these variations are usually small over a 
significant range of temperatures it can be assumed to be constant for the present 
purposes. Air for example has a thermal conductivity of λ ≈ 0.025 W/(m K) and for 
water λ ≈ 0.6 W/(m K), showing that air is a much better insulator than water. 

A relationship between internal energy and temperature is given through the specific 
heat capacity (or simply specific heat) C, which is the measure of heat energy 
required to raise the temperature of a given amount of a substance by one degree 
Kelvin (or Celsius). One generally has to distinguish whether the temperature rise 
takes place at constant pressure (suffix p) or constant volume (suffix v). For liquids 
like water the difference for the specific heats is only small, but for gases like air it 
can be up to 60 %. For air the difference is about 40 % giving specific heats of 
Cp ≈ 1005 J/(kg K) and Cv ≈ 718 J/(kg K) at 0 °C and sea level. For water at 20 °C 
the specific heat is C = Cp ≈ Cv ≈ 4181 J/(kg K). Hence, the balance equation for 
internal energy can be transformed into a heat equation like 

2

p j
j j j

T T TC u
t x x x

ρ λ ε
⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (2.30)

where the internal energy has been substituted by e = CvT . 
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The dissipation of kinetic energy ε appears in the internal energy and in the heat 
equation as a source term while it is a sink term in the kinetic energy equation (3.4). 
This shows that the energy that is lost in the flow field is used to heat the fluid. 
However, in usual this term is rather small and can be neglected. Introducing the 
thermal diffusivity T pCκ λ ρ= , the heat equation finally reduces to 

2

0j T
j j j

T T Tu
t x x x

κ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
, (2.31)

which is a general transport equation for temperature without external sources like, 
e.g. sun radiation, which would enter the right hand side of (2.31). 

Following the concept of a general transport equation the according equation for salt 
is 

2

0j S
j j j

S S Su
t x x x

κ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
, (2.32)

where κS is the haline diffusivity. 

The relation between momentum diffusivity (kinematic viscosity) and thermal 
diffusivity is called Prandtl number Pr while that between momentum diffusivity 
and haline diffusivity (like any other mass diffusivity) is called Schmidt number Sc. 
For water (ν ≈ 1e-6 m/s²) the Prandtl and Schmidt numbers are Pr ≈ 7 and Sc ≈ 700, 
giving κT ≈ 1.4·10-7 m²/s and κS ≈ 1.4·10-9 m²/s, respectively. The idea of a relation 
between the diffusive transport of momentum and temperature or salt will be picked 
up in the next chapter about turbulence modeling. 

2.7 Summary 

In this chapter the governing equations have been introduced and the relevant 
assumptions to simplify and extent these equations have been illustrated. To sum up, 
the whole problem can be described by the incompressible Navier-Stokes equations 
under the Boussinesq assumption in a rotating frame of reference together with 
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transport equations for temperature and salinity as well as an equation of state for 
density depending on temperature and salinity. They form a closed set of equations 
for the unknown variables which is written as 

a) 0j

j

u
x
∂

=
∂

, 

b)
2

0 0

1i i i
j i ij j

j j j i

u u u pu g F u
t x x x x

ρν
ρ ρ

∂ ∂ ∂ ∂
+ − = − + +

∂ ∂ ∂ ∂ ∂
, 

c)
2

0j T
j j j

T T Tu
t x x x

κ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
, (2.33)

d)
2

0j S
j j j

S S Su
t x x x

κ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
, 

e) ( , )T Sρ ρ= . 

In principle (2.33) is valid for laminar as well as turbulent flows. However, the 
validity for turbulent flows is limited due to the randomness and range of scales of 
turbulent fluctuations on the one hand and the limited computational power on the 
other hand. It will be shown in the next chapter which further assumptions have to 
be made if the flow is turbulent. 
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3 Turbulence modeling 

3.1 General 

In contrast to laminar flows which are well ordered with fluid particles following the 
pathlines, turbulent flows are characterized by chaotic fluctuating motions, i.e. 
random deviations from the mean flow paths. The goal of this chapter is to give a 
short introduction to the general nature of turbulence and point out the consequences 
on the numerical modeling of turbulent flows. Turbulence is maybe the most 
challenging task in fluid mechanics and there is a huge amount of literature on this 
complicated topic. A very good overview is provided by the book of Pope (2000) 
which also served as the major reference for this chapter and can be recommended 
for further, more detailed information. 

The random turbulent fluctuations lead to enhanced mixing of transported quantities 
like momentum, temperature or salinity and will increase the energy loss of the 
mean flow. The latter becomes clear if the incompressible momentum balance is 
transformed into a kinetic energy equation by multiplying it with the velocity vector: 

2 2

2 2
iji i

j i i i i
j j i

u u pu u u u g
t x x x

τ
ρ ρ
⎛ ⎞ ∂∂ ∂ ∂

+ = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (3.1)

where Coriolis terms have canceled out. The viscous stress tensor is given by  

ji
ij

j i

uu
x x

τ μ
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
, (3.2)

and will alter kinetic energy by viscous stress gradients. However, the total rate of 
work done by viscous surface forces on a fluid element is actually given by 

( )ij i ju xτ∂ ∂ which can be decomposed into 

i ij ij i
i ij

j j j

u uu
x x x
τ τ

τ
∂ ∂ ∂

= +
∂ ∂ ∂

. (3.3)



3 Turbulence modeling 

24 

The first term on the right hand side is the rate of increase of kinetic energy by local 
acceleration of the fluid and the second term is the deformation work rate which 
increases internal energy of a fluid element by deforming it. The same 
argumentation applies to the pressure term as it is also a surface force on a fluid 
element. Defining the kinetic energy per unit mass 2 2iE u= , inserting (3.3) into 
(3.1) and dropping i ip u x∂ ∂ − which is zero due to the incompressible mass 
balance − one obtains 

1 1i ij i
i i i

i j i

u u pE u E u g
t x x x

τ
ε

ρ ρ
∂∂ ∂ ∂

+ = − + −
∂ ∂ ∂ ∂

. (3.4)

The second term on the left hand side and the first two terms on the right hand side 
are in divergence form and hence they represent fluxes which do not alter the kinetic 
energy balance. The third term on the right hand represents an increase of kinetic 
energy if the fluid velocity is in direction of external forces and a decrase in the 
opposite case. The last term is defined as 

ij ji i i

j j i j

uu u u
x x x x

τ
ε ν

ρ

⎛ ⎞∂∂ ∂ ∂
= = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, (3.5)

and represents the dissipation of kinetic energy. It always appears as a sink in the 
balance equation as viscosity is a positive quantity and the other terms on the right 
hand side correspond to the scalar strain rate, which is also always positive by 
definition (cf. eq. (3.61) and comments). This shows that energy is dissipated 
through the viscosity of the fluid and the velocity gradients in the flow field. Hence, 
if these gradients are large as is the case for random turbulent motion the dissipation 
of kinetic energy will also increase. 

In a turbulent flow energy is dissipated at very small scales where the gradients are 
largest. However the question arises how small these scales really are. This can be 
best explained by assuming that the chaotic turbulent motions are due to eddies of 
various sizes. The largest of which fill out the whole turbulent flow region and the 
smallest will be dissipated by viscous diffusion. Energy is transported in a cascading 
manner from the large scale to the small scale structures. 
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Kolmogorov (1941a,b) suggested that the size of the dissipating eddies depends on 
the relevant parameters for the smallest eddies which are the energy dissipation ε 
and the kinematic viscosity ν. If the typical velocity for the smallest vortices is 
denoted by u′ and the typical length scale is λ then for dimensional reasons the 
energy dissipation - which has the unit m²/s³ - of the smallest eddies is given by 

3uε
λ
′

∼  (3.6)

and the kinematic viscosity must be of order 

uν λ′∼  (3.7)

From (3.6) and (3.7) an estimate of the smallest length scale in a flow − also termed 
as Kolmogorov micro scale − can be deduced: 

1 43νλ
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (3.8)

In analogy to the dissipation on the micro scale (3.6) the dissipation for the largest 
eddies can be assumed to be 

3U
L

ε ∼ , (3.9)

where U and L are typical velocity and length scales of the turbulent flow region, e.g. 
mean velocity and diameter for pipe flow. Equality of dissipation on the macro and 
micro scale gives 

1 43

3 L
U
νλ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (3.10)

or introducing the Reynolds number Re = UL/ν 

3 4Re
Lλ = , (3.11)
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which shows that the smallest length scales (and time scales accordingly) in a flow 
decrease with increasing Reynolds number. 

Another view on the energy cascade is given by the energy spectrum. Most often 
these spectra express energy as a function of wave number k which is the reciprocal 
of wave length and hence a measure for eddy sizes. Please note that the wave 
number is not mixed up with turbulent kinetic energy which is also expressed by a 
lower case k and will be introduced later. Typical energy spectra for various 
experiments compiled by Saddoughi & Veeravalli (1994) are shown in Figure 3.1. 

 

 
Figure 3.1: One dimensional normalized energy spectra for various experiments 

compiled by Saddoughi & Veeravalli (1994). 
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Several features of turbulence can be deduced from Figure 3.1. 

• For small wave numbers (large wave length) the energy content in the 
flow is high and decreases with increasing wave number. 

• The energy cascade is found in the inertial subrange where the spectrum 
has a universal slope proportional to k-5/3. 

• The inertial subrange becomes larger with increasing Reynolds number 
showing that the range of eddy sizes also increases with Reynolds number. 

• For lower wave numbers the spectrum depends on the specific flow field 
and on the Reynolds number while at larger wave numbers (smaller length 
scales) all spectra come together. This indicates the universal character of 
turbulence at small scales and its independence of the large scale flow 
field and Reynolds number. 

• The severe decrease of energy after the inertial subrange represents the 
dissipation of the smallest eddies by viscosity.  

All these issues are typical for any turbulent flow field and should be regarded in a 
numerical simulation.  

3.2 Direct Numerical Simulation (DNS) 

In principle the governing equations (2.33) are valid for any kind of flow no matter 
if it is laminar or turbulent. A Direct Numerical Simulation (DNS) makes use of this 
fact and uses no assumptions to model the effects of turbulence but directly solves 
the governing equations. To accurately reproduce the turbulence cascade, the 
dissipation of energy and turbulent mixing, this requires that the numerical grid is 
fine enough to resolve the smallest scales. 

For a typical gravity current in the Arkona basin in the Baltic Sea which is of major 
interest in this thesis the velocity is in the order of U ≈ 0.5 m/s and the thickness is 
in the order of D ≈ 10 m (see e.g. Arneborg et al. (2007)). Thus, the Reynolds 
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number is Re ≈ 5·106 and according to (3.11) the smallest scales are in the order of 
λ ≈ 0.1 mm. The numerical simulation of only 1 m³ of such a current would require 
about 1·1012 grid cells which is by far more than can be handled by the most 
powerful modern super computers. Although the size of the required time step 
(which is in the order of milliseconds) has not been regarded yet, it is already clear 
that a DNS for simulations on the natural scale is definitely unthinkable. 

In a laboratory experiment the Reynolds number will be naturally much smaller if 
the same fluid (same viscosity) is used. If the Froude number (to be introduced later) 
is kept constant in an experiment on a 1/100 scale, for instance, the Reynolds 
number will decrease by a factor of 1000. Taking the example above, the velocity in 
the experiment would be in the order of U ≈ 0.05 m/s, the thickness of the current in 
the order of D ≈ 0.1 m and the Reynolds number would be Re ≈ 5·103. The 
minimum scales are still very small in the order of λ ≈ 0.2 mm and preclude the 
simulation of a large domain. However, to resolve the whole current depth in a cube 
of 0.13 m3 requires about 125·106 grid cells which is still quite a lot but a realistic 
number to be handled by high performance computers. 

These examples clearly show that a DNS is restricted to relatively small Reynolds 
numbers of Re = O(103) and accordingly small outer scales. Therefore it will be not 
regarded further in this thesis. However, it has been used as a very powerful tool for 
fundamental research which gave some completely new insights into the issues of 
turbulence. Some of them will partly be revisited in the next chapters. 

3.3 Large Eddy Simulation (LES) 

If the size of the computational domain and the Reynolds number increase it 
becomes impossible to resolve the smallest turbulent scales and model assumptions 
have to be made in order to close the problem. The Large Eddy Simulation (LES) is 
a first step in this direction as most scales of the turbulent flow field (the large 
eddies) are still resolved by the numerical grid while the isotropic smaller scales are 
accounted for by a model. This concept makes LES to be a compromise between  
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the DNS and the RANS (Reynolds Averaged Navier-Stokes) approach where the 
whole turbulent flow field is modeled as to be explained in the next chapter.  

The governing equations for LES can be formally obtained by filtering the original 
Navier Stokes equations such that eddies with scales smaller than the filter width are 
filtered out and the resulting equations govern the dynamics of the large eddies. In 
principle any flow quantityφ can be split up into a ‘grid scale’φ and a ‘subgrid 
scale’φ′ : 

φ φ φ′= + , (3.12)

where the terminology ‘grid’ stems from the interpretation of the filter to sift out the 
small eddies like they were falling through a grid. The ‘grid scale’ denotes the 
filtered variable which is given by  

( ) ( ) ( , ; )di i i i i ix x G x x xφ φ
Ω

′ ′ ′= Δ∫ , (3.13)

where Ω is the fluid domain and G is the filter function with the characteristic filter 
width Δi. Several filter functions can be used the most common being the top-hat or 
box filter, the cut-off filter and the Gauss filter each of which having its individual 
advantages and disadvantages. This explicit filtering approach is generally 
independent of the numerical scheme but in case a Finite Difference or Finite 
Volume scheme is applied to discretize the differential equations it is convenient to 
use a box filter with the filter width given by the extent of the grid cells. A general 
formulation independent of the cell shape is obtained if the cell volume V is used as 
the box filter width such that 

1 ( )d  ,     φ φ ′ ′ ′= ∈∫ i i i
V

x x x V
V

. (3.14)

Applying the filter to the Navier Stokes equations and obeying the mathematical 
rules for filtering, the balance equations for mass, momentum and temperature can 
be written in terms of the filtered quantities: 
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. (3.17)

where the temperature equation has been chosen as a proxy for any transported 
quantity. It turns out that the filtered balance equations resemble the original Navier 
Stokes equations except for the additional terms on the right hand side which 
represent the subgrid scale momentum and temperature fluxes given by 

,ij SGS i j i ju u u uτ = − , (3.18)

,j SGS j jq Tu Tu= − . (3.19)

These terms are unknown and require model assumptions. The first model was 
proposed by Smagorinsky (1963) and established over the years as the standard 
model for LES which is still successfully used today. It is based on the turbulent 
viscosity/diffusivity assumption (to be described in the next chapter) which relates 
the subgrid scale fluxes to the gradients of the filtered grid scale quantities:  

, 2ji
ij SGS t t ij

j i

uu S
x x

τ ν ν
⎛ ⎞∂∂

= − + = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
, (3.20)

,
t

j SGS
t j
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ν
σ

∂
=

∂
, (3.21)

where ijS is the strain rate of the resolved scale, νt is the turbulent viscosity and the 
turbulent diffusivity is defined by the turbulent Prandtl number σt (also to be 
explained in the next chapter) which is usually in the order of σt = 1. The turbulent 
viscosity is assumed to be proportional to a turbulent length scale and a turbulent 
velocity scale (cf. next chapter) and is modeled by 
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2
t SGS ijL Sν = , (3.22)

where LSGS is the subgrid scale mixing length and 2ij ij ijS S S= is the scalar shear 
rate of the resolved scale. The mixing length is usually related to the filter width  by 

( )1 3 1 3
1 2 3SGS S S SL C C C V= Δ = Δ Δ Δ = , (3.23)

where CS is a constant named after Smagorinsky. For homogenous isotropic 
turbulence in the inertial subrange Lilly (1967) derived a theoretical value for the 
Smagorinsky constant of CS = 0.165. However, it turned out that this value is too 
high and causes excessive damping of large-scale fluctuations in anisotropic mean 
shear and transitional flows as e.g. in the presence of solid boundaries. In these cases 
the Smagorinsky constant has to be reduced and many practical applications suggest 
a typical range of 0.065 < CS < 0.1. 

It is obvious that the Smagorinsky constant is unlikely to be a constant and 
Germano (1991, 1992) and subsequently Lilly (1992) conceived a theory by which 
CS is dynamically computed based on the information provided by the resolved 
scales of motion. It is beyond the scope of the present work to go through the details 
of this approach as it is only one of many others that have been suggested over the 
last years. More details about the theory and applications of DNS and LES can be 
found in Breuer (2002) who also gives a nice review of the history of these methods 
and refers to a huge amount of further literature about this topic. 

Even with the simplest subgrid scale model of Smagorinsky (1963) LES provides a 
reliable and robust approach for the simulation of turbulent flows since a large part 
of the fluctuating flow field is not modeled but directly resolved by the numerical 
grid. However, this superiority compared to the RANS models, to be followed next, 
is also the major drawback of the method as the required fine resolution of the 
computational grid is associated with a high numerical effort and still precludes the 
application on natural scales with high Reynolds numbers. Therefore the working 
horse for the present thesis will be the RANS equations but LES results from the 
literature will serve as a reference for the flow around a circular cylinder in chapter 5. 
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3.4 Reynolds Averaged Navier-Stokes Equations (RANS) 

The Reynolds Averaged Navier-Stokes equations are founded on the idea that the 
variables in a randomly fluctuating turbulent flow field can be split up into a mean 
and a fluctuating part according to 

φ φ φ′= + , (3.24)

whereφ symbolizes any flow variable and the overbar and prime denote the mean 
and fluctuating part, respectively. In general the mean value can be interpreted as an 
ensemble average which represents the mean value of an infinite number of identical 
experiments 

1

1lim
N

iN iN
φ φ

→∞
=

= ∑ . (3.25)

For stationary flows this is identical to the temporal mean. 

The mean and the fluctuating parts have to obey among others the following rules: 

0; ; 0;φ φ φ φφ φφ φφ′ ′= = = = . (3.26)

Applying (3.24) to the unknown variables and inserting these into the governing 
equations (2.33), averaging like in (3.25) and obeying the rules in (3.26) will result 
in a set of Reynolds averaged equations. The procedure is demonstrated for the 
continuity equation (2.33)(a). Inserting the composed velocities and averaging gives 

0j j

j j

u u
x x

′∂ ∂
+ =

∂ ∂
. (3.27)

As the mean of the fluctuations is zero it immediately follows that continuity of the 
mean flow field obeys the same rules like its instantaneous counterpart 
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=
∂

. (3.28)
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Combining (3.27) and (3.28) gives an additional continuity equation for the 
fluctuations 

0j

j

u
x
′∂
=

∂
. (3.29)

which can be used in the derivation of the momentum balance to give 
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∂ ∂ ∂ ∂ ∂ ∂
. (3.30)

The Reynolds averaged momentum balance looks also exactly like the instantaneous 
one (2.33)(b) except for the last term on the right hand side which appears due to the 
nonlinearity of the advective terms. As this term is of a similar form like the 
molecular stress term in (2.2) the correlations i ju u′ ′ are called Reynolds stresses and 
form the Reynolds stress tensor. The terminology stress in this context might be a bit 
misleading as the correlations of the fluctuations do not really exert stresses on the 
fluid but much more enhance the momentum flux in the flow. Thus, turbulent 
momentum flux might be a better expression. 

Applying the same procedure to the temperature and salt balance (2.33)(c)(d) yields 

2

κ
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∂ ∂ ∂ ∂ ∂

j
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, (3.32)

where the additional terms are the turbulent temperature and salinity fluxes. Finally, 
for the equation of state the turbulent fluctuations might be neglected to give 

( , )T Sρ ρ= . (3.33)

Due to the additional unknowns given by the turbulent fluxes the equation system is 
no longer closed and further transport equations are needed for these variables. In 
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principle it is possible to derive such equations as will be shown in chapter 3.6. 
However, again due to the nonlinearity in the advective terms there appear new 
unknown correlations of higher order like i j ku u u′ ′ ′ and it is impossible to close the 
problem in this way. Hence, further assumptions are necessary for closure and the 
level at which they are applied will determine the order of a model. If, for example, 
only correlations of second order are regarded and all others are modeled one has a 
second order model or a second moment closure. 

3.4.1 Turbulent viscosity/diffusivity assumption 

Now, even if the second moment closure is the simplest one the correlations that 
appear in (3.30), (3.31) and (3.32) require 12 (the turbulent momentum flux tensor is 
symmetric) additional transport equations and the solution of the problem becomes 
quite expensive. Turbulence models that directly rely on the transport equations for 
the turbulent fluxes will be discussed later in chapters 3.6 and 3.7, but first it is 
useful to start with simpler models that are numerically much cheaper.  

One way to reduce the numerical effort is the turbulent viscosity (diffusivity) 
assumption also defined as eddy viscosity assumption. It is also attributed to 
Boussinesq (1877) and sometimes referred in the literature simply as Boussinesq 
assumption or Boussinesq approximation which should not be confused with the 
assumptions introduced in chapter 2.3. The basic idea lies in the fact that the 
turbulent momentum fluxes can be interpreted as stresses and thus can be related to 
the mean rate of strain by a viscosity, like the molecular stresses in (2.3): 

2
3

ji
i j t ij

j i

uuu u k
x x

ν δ
⎛ ⎞∂∂′ ′ = − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. (3.34)

The second term on the right hand sight is necessary in order for the trace of the 
turbulent momentum flux tensor to give the right turbulent kinetic energy which is 
defined by (remind: Einstein summation convention): 

1
2 i ik u u′ ′= . (3.35)
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In chapter 2.6 the Prandtl and Schmidt numbers had been introduced. If this concept 
is adopted to the turbulent fluxes these can be expressed accordingly as 

t
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, (3.36)
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, (3.37)

where σT, σS define the turbulent Prandtl numbers for temperature and salinity and 
have values in the order of 1. 

Inserting (3.34), (3.36), (3.37) into the averaged balance equations (3.30), (3.31), 
(3.32) and recalling the continuity equation (3.28) and the equation of state (3.32) 
one arrives at the RANS and transport equations which are the basis for this thesis: 
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e) ( , )T Sρ ρ= . 

It should be noted that the turbulent viscosity and the corresponding diffusivities are 
usually some orders of magnitude larger than their molecular counterparts which are 
therefore sometimes omitted. Moreover, in contrast to the molecular quantities the 
turbulent viscosity is not a constant but depends on the flow and turbulence field. 
Hence, it must be kept inside the derivative in the diffusion term. 
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The turbulent viscosity assumption reduces the number of unknowns from 12 to 3 or 
if the turbulent Prandtl numbers are assumed to be constant, which will be done here 
for the time being, only to 1 unknown, the turbulent viscosity. 

3.4.2 Mixing length model 

The turbulent viscosity can be determined in several ways the easiest of which is 
based on the mixing length hypothesis by Prandtl (1925), which assumes that the 
turbulent viscosity is proportional to the rate of strain of the mean velocity field 

2 i
t m

j

ul
x

ν ∂
=

∂
, (3.39)

where the constant of proportionality is defined by the mixing length lm. This does 
not solve the problem yet as the mixing length is still unknown. For a turbulent 
boundary layer it can be shown to be lm = κy, where y is the distance from the wall 
and κ ≈ 0.41 is the von Kármán constant (cf. eq. (3.145) in chapter 3.8). In open 
channel flow the shear stress decreases linearly from the bottom to the free surface 
implying a mixing length of the form lm = κy(1-y/H)1/2, where H is the water depth. 
For a turbulent mixing layer the relation is lm ≈ 0.07δ(x), where δ(x) is the mixing 
layer width. 

From all these definitions it can be seen that the mixing length is a function of 
position and must be specified explicitly. For more complex flows this requires a lot 
of guesswork and one should have little confidence in the resulting mean velocity 
field. Another drawback of the mixing length model lies in the fact that the influence 
of stratification on the turbulence field is not regarded in the model and must be 
implemented a posteriori through empirical relations. Even if the mixing length 
model seems to be quite crude it is still used today (e.g. Wurpts (2006)) as in very 
simple circumstances, like the open channel flow example above, the assumptions of 
the mixing length model are justified. However, the flow of a density current around 
a cylindrical structure is by far anything else than a simple configuration and the 
mixing length model will not be regarded further in the present work. 
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3.5 Two equation models 

A more sophisticated way was proposed independently by Kolmogorov (1942) and 
Prandtl (1945). In analogy to the molecular viscosity they suggested that the 
turbulent viscosity is proportional to the product of a turbulent length scale (like the 
mixing length) and a turbulent velocity scale 

t VLν ∼ . (3.40)

 For dimensional reasons the velocity and length scale could be given by 

1 2V k∼ , (3.41)

3 2kL
ε

∼ . (3.42)

With k being the turbulent kinetic energy and ε its dissipation rate the turbulent 
viscosity becomes 

2

t
kcμν
ε

= , (3.43)

where cµ is the constant of proportionality. The remaining task is to find appropriate 
transport equations for the turbulent quantities. As there will be two additional 
equations for the turbulence closure to be solved these models are referred to as two-
equation models.  

A transport equation for turbulent kinetic energy k can be derived in different ways. 
One way leads over the momentum balance for the turbulent fluctuations which is 
obtained by subtracting the Reynolds averaged momentum balance (3.30) from the 
instantaneous momentum balance (2.33) giving 
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Taking the definition of turbulent kinetic energy k in (3.35), multiplying (3.44) with 

iu′ and averaging yields an expression for the transport of k: 
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where the Coriolis term and the turbulent momentum flux term have vanished. The 
last term on the right hand side denotes the dissipation of turbulent kinetic energy 
and is given by 
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Hence, it represents an unknown and must be determined somehow, which will be 
discussed later. The third order correlations on the left hand side of (3.45) and the 
pressure correlation on the right hand side are also unknown and need model 
assumptions. As both are in divergence form they represent fluxes of turbulent 
kinetic energy which can be modeled both together using the turbulent viscosity 
assumption. Introducing a turbulent Prandtl number for turbulent kinetic energy, σk, 
equation (3.45) becomes 
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Equation (3.47) shows that turbulent kinetic energy is transported by advection in 
the mean flow field and (turbulent) diffusion. It is produced and dissipated by the 
terms on the right hand side. The last term denotes the dissipation rate as discussed 
above. The first and second term represent production by shear in the mean flow and 
production by buoyancy. The shear production term also appears with its sign 
reversed in the kinetic energy equation for the mean flow field which can be derived 
by multiplying the mean momentum equations by iu and averaging. This shows the 
principle of energy transfer between the mean and the turbulent flow fields. Shear in 
the mean flow field will usually decrease mean kinetic energy and increase turbulent 
kinetic energy. 
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The buoyancy term can have either sign depending on stratification. In a stable 
situation with density increasing in the direction of the external force gj, the 
buoyancy flux will be in the opposite direction contributing to a decrease of 
turbulent kinetic energy and eventually an increase of mean potential energy. In an 
unstable situation, like convective heat transfer the process is vice versa and 
turbulent kinetic energy is increased while potential energy decreases. 

Symbolizing the production terms by P and G, respectively results in the final form 
for the transport equation for turbulent kinetic energy: 
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However, P and G still contain the unknown momentum and buoyancy fluxes and 
need further model assumptions. In accordance with the turbulent viscosity 
assumption in (3.34) the shear production term can be written as 
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where the second term on the right hand side of (3.34) cancelled out because of 
incompressibility. To model the buoyant production in a similar manner the 
turbulent buoyancy flux must be modeled first. This can be done if the turbulent 
buoyancy flux is first expressed in terms of turbulent temperature and salinity fluxes:  

i i iu T u S u
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where ρ is given by (3.38)(e). Recalling the turbulent diffusivity assumption in (3.36) 
and (3.37) and assuming equal turbulent Prandtl numbers for temperature and 
salinity (σt = σT = σS) the turbulent buoyancy flux then simplifies to 
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and the buoyancy production term under the turbulent viscosity assumption can be 
defined as 

0

j t

t j
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ρ σ
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. (3.52)

As the turbulent viscosity is positive by definition this formulation is consistent with 
the above findings that turbulent kinetic energy decreases in a stable stratification 
when density increases in the direction of the external force field. 

With the transport equation for turbulent kinetic energy (3.48) it is possible to 
determine the turbulent velocity scale (3.41) which is needed for the calculation of 
turbulent viscosity from (3.40). However, the turbulent length scale is still unknown 
and must be established by a second transport equation. Furthermore (3.48) is not 
yet fully closed as the dissipation rate is still unknown. For this reason and from the 
definition of the turbulence length scale in (3.42) it seems straightforward to define a 
transport equation for ε which leads to the very popular class of k-ε models. 

3.5.1 k-ε models 

For the determination of the turbulent viscosity in the k-ε models two additional 
transport equations one for turbulent kinetic energy k and one turbulent dissipation 
rate ε are solved. The transport equation for k has been derived above and the 
formulation given by (3.48) is generally adopted in almost all two equation models. 
A transport equation for ε can also be derived formally by multiplying (3.44) with 
the operator 2 i k ku x xν ∂ ∂ ∂ ∂ and averaging. However, almost all terms in the 
resulting equation contain unknowns and must be modeled. Hence, although all k-ε 
models rely on the same transported quantities, especially the transport equations for 
the turbulent dissipation rate eventually differ significantly from model to model. 

Before continuing with the specific models it is useful to recall some definitions and 
determine new ones that will appear in the specific models. The major task of the 
turbulence models described here is the determination of the turbulent viscosity νt 
which is defined through (3.40) as the product of a turbulent velocity scale and a 
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turbulent length scale. However, for dimensional reasons it could as well be defined 
by a turbulent velocity scale squared multiplied by a turbulent time scale: 

2ν ⋅∼t V T . (3.53)

With the definitions given by equation (3.41) and (3.43) the turbulent time scale is  

T k ε= . (3.54)

This definition will be especially important in conjunction with the k-ω models 
treated in the next section (cf. equation (3.79)). Here it will be used to define the 
dimensionless turbulent shear number which requires a further time scale 
determined by the shear in the mean flow field. 

Another important definition results from the rate of strain tensor of the mean flow 
field, which is − according to equation (2.4) − given by 
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and appears e.g. in the shear production term (3.49) which can be rewritten as 
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Any tensor can be split up in a symmetric and an asymmetric tensor like 
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where the first term on the right hand side is the rate of strain tensor (3.55) and the 
second term represents the rate of rotation tensor given by 
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Noting further that the product of a symmetric tensor with any other tensor equals 
the product of the symmetric tensor with the symmetric part of the other tensor, 
(3.56) becomes 

2t ij ijP S Sν= , (3.59)

which can finally be simplified to  

2
tP Sν= , (3.60)

where the scalar strain rate is given by 

2 ij ijS S S= . (3.61)

As the unit of the strain rate is 1/s the product with the turbulent time scale T defined 
in (3.54) further yields the dimensionless turbulent shear number 

k Sη
ε

= , (3.62)

which is frequently used as a scaling parameter in turbulence modeling. 

Standard k-ε model 

The standard k-ε model was the first two-equation model and originally presented by 
Launder & Spalding (1972). The basic assumption in the modeling of the dissipation 
rate equation is that the production and dissipation of ε is proportional to that of k. 
The transport equations for the standard k-ε model are 
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where the production and dissipation terms on the right hand side of (3.64) are 
scaled by the inverse turbulent time scale and adjusted by constant empirical 
parameters cε1, cε2 and cε3. The model constants (including cµ) have been determined 
by experimental evidence of very simplified situations like decay of shear free 
turbulence (cε2) and homogeneous turbulent shear flow (cµ, cε1). 

While the contribution of buoyancy to the budget of kinetic energy can be precisely 
derived, as shown above, its role in the transport equation for the turbulent 
dissipation rate is controversially discussed. The general model assumption to treat 
buoyancy in the same manner like the shear production and the dissipation terms in 
the ε equation is well agreed, however, the constant cε3 is not uniquely defined. It 
appears to be the case for all other models that will follow and a proper definition of 
cε3 will be discussed in chapter 6.1.5. All other model constants including the 
turbulent Prandtl numbers for k and ε are given in Table 3.1: 

 
cµ cε1 cε2 σk σε 

0.09 1.44 1.92 1.0 1.3 

Table 3.1: Model constants for the standard k-ε model 

The standard k-ε model being the first of its kind has a broad range of applicability 
and is incorporated in most numerical models today. It has been applied to a diverse 
range of problems and the experience with this model is huge. It is well known, that 
the model predicts the spreading rate of a planar jet fairly well while it significantly 
overestimates it for a round jet. This is attributed to the model constants and can be 
remedied by adjusting the values cε1 and cε2 to the problem. However, such a flow 
dependent adjustment is of limited value and the round jet anomaly was one reason 
for the development of more comprehensive k-ε models two of which will follow. 

RNG k-ε model 

The transport equation for ε in the standard k-ε model was presented to be entirely 
empirical as a formal derivation from (3.44) yields so many unknowns that need 
model assumptions. The renormalization group method (RNG) allows for a 
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derivation of the k-ε equations from the instantaneous Navier-Stokes equations 
(Yakhot & Orszag (1986)). The transport equations for the RNG k-ε model are given 
by 

j k eff
j j j

k k ku P G
t x x x

α ν ε
⎛ ⎞∂ ∂ ∂ ∂

+ − = + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
, (3.65)

( ) ( )1 3 2j eff
j j j

u c P c G c R
t x x x kε ε ε ε ε
ε ε ε εα ν ε

⎛ ⎞∂ ∂ ∂ ∂
+ − = + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, (3.66)

and, hence, are very similar to those of the standard model. One of the differences is 
the formulation of the diffusion term where eff tν ν ν= + is the sum of the molecular 
and turbulent viscosities and the inverse effective Prandtl numbers αk and αε are both 
defined by 

0.6321 0.3679

0 0

1.3929 2.3929
1.3929 2.3929 eff

α α ν
α α ν

− −
=

− −
, (3.67)

where α0 = 1.0 and α stands either for αk or αε. For high Reynolds numbers when 
ν << νeff  the effective Prandtl numbers converge to αk = αε ≈ 1.393. 

The RNG theory also yields a different formulation for the turbulent viscosity which 
is defined by a differential equation. In the high Reynolds number limit, however, 
this formulation results in the same formulation as equation (3.43) with a slightly 
lower constant cµ = 0.0845 as in the standard model. The other constants cε1 and cε2 

are also a direct result of the RNG analysis (Orszag (1996)) and appear to be 
comparable to those of the standard model. All model constants for the RNG 
k-ε model are compiled in Table 3.2. 

 
cµ cε1 cε2 αk αε 

0.0845 1.42 1.68 1.393 1.393 

Table 3.2: Model constants for the RNG k-ε model 
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The main difference to the standard k-ε model lies in the additional term Rε on the 
right hand side of the transport equation for ε (3.66) which is actually not an 
outcome of the derivation with RNG theory. It is defined by 

( )3
0

3

1
1

c
R μ
ε

η η η
ε

βη
−

=
+

, (3.68)

where the constants are given by η0 = 4.38 and β = 0.012 and η is the turbulent shear 
number as defined in (3.62). This term modifies the destruction of turbulent 
dissipation rate and as such the leading fraction in (3.68) can be understood as a 
modification of the model constant cε2 giving 

( )3
0*

2 2 3

1
1

c
c c μ
ε ε

η η η
βη
−

= +
+

. (3.69)

In the logarithmic boundary layer the turbulent shear number can be shown to be 
η ≈ 3.0, giving *

2 2.0cε ≈ which is comparable to the value of 1.92 in the standard 
model. In regions of large strain, where η > η0, the dissipation of ε will be reduced 
and therefore ε itself is augmented. This leads to a reduction of k and eventually to a 
lower turbulent viscosity, which makes the RNG k-ε model more sensitive to the 
effects of rapid strain and streamline curvature in comparison to the standard model. 

Realizable k-ε model 

The major discrepancies of the standard k-ε model were mainly attributed to the 
empirically modeled transport equation for turbulent dissipation. Besides the round 
jet anomaly it can be shown that the model also does not satisfy some mathematical 
constraints and, hence, is non-realizable. The normal momentum flux in x-direction, 
for instance, is a positive quantity by definition and is given in the framework of 
turbulent viscosity by 

22
3t

uu u k
x

ν ∂′ ′ = − +
∂

. (3.70)

However, inserting (3.43) into (3.70) shows that the right hand side will become 
negative when the strain is large enough, according to 
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1 3.7
3

k u
x cμε

∂
> ≈

∂
. (3.71)

To make the model realizable the most straightforward way seems to be the 
reduction of cµ in regions of large strain. This is supported by experimental evidence 
as in strong homogeneous shear flow cµ has been found to be in the order of 0.05 
which is significantly less than the standard value of 0.09. 

The realizable k-ε model proposed by Shih et al. (1995) tries to solve the drawbacks 
of the standard model by the definition of a new transport equation for ε and by 
making cµ variable as originally proposed by Reynolds (1987). The transport 
equations for the realizable model are 

t
j

j j k j

k k ku P G
t x x x

νν ε
σ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
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, (3.72)
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. (3.73)

The transport equation for k is exactly the same as in the standard model (3.64). The 
equation for ε, however, only adopts the transport terms on the left hand side while 
the shear production and the dissipation term on the right side are significantly 
different. The production term no longer involves P, the production of k, which is 
believed to better represent the spectral energy transfer. In the new production term 
S is the rate of strain (3.61) and the model parameter cε1 is not necessarily constant 
but might depend on the turbulent shear number (3.62) and is given by 

1 max 0.43,
5

cε
η

η
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
. (3.74)

The dissipation term is quite similar to that in the standard model except for the 
additional term in the denominator which removes the singularity present in the 
standard model if k vanishes. 
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As stated above cµ is not a constant but formulated as a function of the mean strain 
and rotation rates. It is given by 

*
0

1

S

c
A A u kμ ε

=
+

, (3.75)

where 

*
ij ij ij ijU S S= +Ω Ω  (3.76)

and Sij and Ωij are the mean rate of strain and rate of rotation tensors given by (3.55) 
and (3.58), respectively. A0 is constant and given by A0 = 4.04 and AS is a function of 
strain rate defined by  

6 cosSA φ=  (3.77)

with 

( ) 3

1
3cos 6

ij jk ki
ij ij

S S S
W S S S

SW
φ = = =��,     ,     . (3.78)

The realizable k-ε model has been validated for a number of different flows, like jets, 
shear layers or separated flows and showed a better performance than the standard 
model throughout. For a turbulent boundary layer, however, cµ, as defined by (3.75), 
will recover the standard value of 0.09 and there is almost no difference between 
both models. Table 3.3 summarizes all model constants for the realizable k-ε model, 
even cµ and cε1 which are strictly speaking no constants and therefore defined as 
variable. 

 
cµ cε1 cε2 σk σε 

variable variable 1.90 1.0 1.2 

Table 3.3: Model constants for the realizable k-ε model 
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3.5.2 k-ω models 

In the preceding section it was shown, that the turbulent viscosity can also be 
described by a turbulent velocity scale and a turbulent time scale. This is the basis 
for the k-ω models that solve an additional transport equation for ω instead of ε, 
where ω can be thought of as a specific dissipation rate. It is defined as the inverse 
turbulent time scale (3.54) 

k
εω = , (3.79)

and therefore sometimes referred to as turbulent frequency. 

The original k-ω models did not account for buoyancy in the transport equations, 
however, Umlauf et al. (2003) showed that the inclusion of the buoyancy production 
term as given by (3.52) is straightforward and extents the applicability of these 
models to stratified flows and density currents. 

Standard k-ω model 

The standard k-ω model was first proposed by Wilcox (1988) and later revised by 
Wilcox (1998). The original model equations were given in a different form than 
those for the k-ε models presented above. Here the notation of Umlauf et al. (2003) 
is adopted in which the transport equations for turbulent kinetic energy and specific 
dissipation rate are given as  

t
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j j k j

k k ku P G
t x x x

νν ε
σ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
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, (3.80)
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. (3.81)

The k equation is exactly the same as for the k-ε models except for the turbulent 
Prandtl number and the formulation of the dissipation rate which is given as 
proportional to the product of k and ω: 
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cc f k
μμε ω= . (3.82)

The equation for ω has a similar form like the transport equations for ε above. The 
production and dissipation terms are scaled by the ratio ω/k and adjusted by the 
parameters cω1, cω2 and cω3, where the latter is due to the inclusion of the buoyant 
production term and will be discussed in chapter 6.1.5, according to cε3 above. The 
other two emerging from the original model are not necessarily constants but 
functions of turbulence intensity, giving a low Reynolds number correction. 
However, here only the high Reynolds number version is considered where both are 
constant. 

The two additional parameter functions fcµ and fcω were not present in the original 
model and have been introduced by Wilcox (1998) to enhance the model 
performance in free shear layer flows. They are given by 
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(3.83)

with 
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ω

Ω Ω
= , 

(3.84)

where Ωij and Sij are the rate of rotation and rate of strain tensors given by (3.55) and 
(3.58), respectively. All model constants for the standard k-ω model are given in 
Table 3.4. 
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cµ cω1 cω2 σk σω 

0.09 0.52 0.8 2.0 2.0 

Table 3.4: Model constants for the standard k-ω model (Wilcox (1998)). 

The original model is recovered by setting the parameter functions fcµ = fcω = 1 and 
slightly changing the constants cω1 and cω2 to 0.55 and 0.83, respectively. 

SST k-ω model 

The standard k-ω model is superior to the k-ε models in terms of near wall treatment. 
As will be shown in the next chapter, the transport equation for ε cannot be 
integrated down to a wall while this is possible for the ω equation. On the other hand 
the k-ε models are less sensitive in the free stream away from walls which inspired 
Menter (1994) to derive a model that uses both the accurate and robust formulation 
of the k-ω model in the near wall region and the free-stream independence of the 
k-ε model in the far field.  

The shear-stress transport (SST) k-ω model blends between the standard k-ω model 
of Wilcox (1988) and the standard k-ε model with the equation for ε transformed to 
an equation for ω. The terminology SST stems from a modification of the turbulent 
viscosity to account for the transport of principal turbulent shear stress, which is 
attributed to give the SST k-ω model a better performance compared to the both 
standard models it is based on. The transport equations for k and ω are given by 
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j j k j
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t x x x

νν ε
σ
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, (3.85)
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which resemble the equations for the standard model except for the model constants 
and the last term on the right hand side of the ω equation. It represents a cross 
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diffusion term which is a result of the transformation of the k-ε equations to the 
k-ω equations. It is given by 

,2

12
j j

kD
x xω

ω

ω
σ ω

∂ ∂
=
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. (3.87)

The blending between the k-ω and the k-ε formulation can be solely achieved by a 
blending of the different model constants. These are compiled in Table 3.5 and 
Table 3.6 where the constants for the standard k-ω model in the near wall region are 
denoted by index 1 and those for the k-ε model in the far field by index 2. Note that 
the constant cω4 is 0 for the k-ω model and 1 for the k-ω version of the k-ε model. 
Hence, it is not a real model constant but has been introduced here to fit the cross 
diffusion term into the concept of blending the model constants. Also note that the 
model constants cε1 and cε2 of the standard k-ε model are related to those of the 
k-ω version of the model by cω1,2 = cε1 − 1 and cω2,2 = cε2 − 1. This will be an 
interesting fact for the derivation of the model constant c3 in chapter 6.1.5. 

 
cµ cω1,1 cω2,1 cω4,1 σk,1 σω,1 

0.09 0.55 0.83 0.00 2.0 2.0 

Table 3.5: Model constants for the SST k-ω model in the near wall region. 

 
cµ cω1,2 cω2,2 cω4,1 σk,2 σω,2 

0.09 0.44 0.92 1.00 1.0 1.17 

Table 3.6: Model constants for the SST k-ω model in the far field. 

Taking the placeholderφ for any of the model constants and marking the near wall 
constants by superscript (1) and the far field constants by superscript (2), the 
blending between the models is defined by 

( )(1) (2)
1 11F Fφ φ+ − , (3.88)

where F1 is the blending function depending on the wall distance y it is given by 
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( )4
1 1tanhF = Φ , (3.89)
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The major advantage of the SST k-ω model compared to the standard model is the 
modification of the turbulent viscosity which can be expressed as 

2
* *
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k kc c cμ μ μν
ω ε

= = , (3.91)

with ε given by (3.82) and the damping function *cμ  defined as 
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where S is the strain rate and F2 is a blending function defined (very similar to F1) 
by 

( )2
2 1tanhF = Φ , 
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⎛ ⎞
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⎝ ⎠
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(3.93)

The damping function *cμ  retains the definition of µt for the standard k-ω model in 
the near wall region and limits the turbulent momentum fluxes only in the far field, 
where they tend to be overestimated by the standard model. 
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3.6 Reynolds Stress Models 

All turbulence models discussed so far rely on the assumption that the anisotropy of 
the turbulent fluxes is directly related to the mean velocity gradients with the 
turbulent viscosity being the function of proportionality. Taking the turbulent 
momentum fluxes for instance, the anisotropy tensor is given by 

2 2
3

ji
ij i j ij t t ij

j i

uua u u k S
x x

δ ν ν
⎛ ⎞∂∂′ ′= − = − + = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (3.94)

confer (3.34) and (3.55). This assumption is reasonable for a wide class of shear 
flows including boundary layers, mixing layers and jets. However, in some 
particular situations (e.g. an axisymmetric contraction) when the turbulence field is 
rapidly distorted it can be shown (e.g. Pope (2000)) that the turbulent momentum 
fluxes are not determined by the mean rate of strain but rather by the total amount of 
mean strain experienced by the turbulence. 

In Reynolds stress models (RSM) the turbulent fluxes are determined by solving the 
transport equations for each individual correlation and the turbulent viscosity 
hypothesis is not necessary. However, to close the problem other model assumptions 
have to be made which will be described in the next sections. 

It should be noted that the terminology ‘Reynolds stress model’ actually refers to 
models in which density is constant and only the transport equations for the 
turbulent momentum fluxes are solved. If also the turbulent buoyancy fluxes are 
regarded − as done here − a better term for these models might be ‘second moment 
closure’ which is often used in the literature. However, the same inconsistency 
applies to the ‘algebraic stress models’ described in the next chapter for which no 
other name has been used. Therefore to be consistent in the inconsistency the term 
Reynolds stress model will be used here, keeping in mind that the density field is 
variable and also transport equations for the density determining quantities are 
solved. 
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3.6.1 Transport equations for turbulent momentum fluxes 

The derivation of the transport equations for the turbulent momentum fluxes is quite 
tedious and will not be given here in detail. It can formally be obtained by 
multiplying the transport equation for iu′  (3.44) with iu′ , exchanging indices to 
obtain another equation, adding these equations together and averaging, which 
finally results in 

{ }

{ }

2

0

0

0

1

1

1

i j i j i j i j k ji
k

k k k k j i

ji
i k j k i k ik j k jk

k k

i j j i

ji

j i

u u u u u u u u u u pu pu
t x x x x x x

uuu u u u u u F u u F
x x

g u g u

uup
x x

ν
ρ

ρ ρ
ρ

ρ

⎧ ⎫⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂′ ′∂⎪ ⎪⎜ ⎟+ − − − + =⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∂⎧ ⎫∂⎪ ⎪′ ′ ′ ′ ′ ′ ′ ′− + − +⎨ ⎬

∂ ∂⎪ ⎪⎩ ⎭

′ ′ ′ ′− +

⎧ ⎛ ⎞′∂′∂′+ +⎜ ⎟⎨ ⎜ ⎟∂ ∂⎝ ⎠

2 ji

k k

uu
x x

ν

⎫⎪ ⎪
⎬

⎪ ⎪⎩ ⎭
′∂′∂

−
∂ ∂

 .

 (3.95)

This rather complicated expression has already been grouped to further simplify the 
notation by introducing tensors for the various groups. In (3.95) the first line 
represents advective (Aij) and diffusive (Dij) transport, the second line production by 
shear (Pij) in the mean flow field and by Coriolis forces (Cij), the third line 
production by buoyancy (Gij), the fourth line redistribution due to pressure-strain 
correlations (Πij) and the last line the dissipation rate (εij). 

The effect of the Coriolis force due to the rotation of the earth is rather small and Cij 
can usually be neglected. Taking the remaining tensors and noting that Aij is given 
by a total derivative the transport equations for the turbulent momentum fluxes can 
be compactly written as 

i j
ij ij ij ij ij

du u
D P G

dt
ε

′ ′
− = + + Π − . (3.96)
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Of the various terms in (3.95) and (3.96), respectively, only Pij is known as it solely 
contains iu and i ju u′ ′ for which transport equations are solved. All other terms need 
some model assumptions that will be discussed next. 

Dissipation 

Starting with the last term on the right hand side, it can be shown (e.g. Pope (2000)) 
that in high Reynolds number flows the dissipation rate is locally isotropic such that 

ijε can be modeled by 

2
3ij ijε εδ= . (3.97)

However, this does not solve the problem yet as ε is still an unknown quantity. 
Hence, all Reynolds stress models require an additional transport equation for ε in 
order to close the equations. 

Diffusion 

The diffusion term on the left hand side contains fluxes due to molecular diffusion 
as well as fluctuating velocities and pressure. The molecular term is in closed form 
and needs no models assumptions. Furthermore, it is only important in the near wall 
region and can be neglected in the free stream. The velocity and pressure fluctuation 
terms on the other hand have to be modeled which is commonly done for both terms 
together using the concept of turbulent diffusion.  

The definition of the turbulent kinetic energy (3.35) suggests the unknown fluxes of 
Dij to be modeled according to the assumptions made in (3.47). Neglecting the 
molecular diffusion and using the idea of turbulent diffusion Dij can be written as 

i jt
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u u
D

x x
ν
σ

⎛ ⎞′ ′∂∂
⎜ ⎟= ⎜ ⎟∂ ∂⎝ ⎠

, (3.98)

where the turbulent Prandtl number σk is assumed to be the same like that in the 
transport equation for k. This is self-evident as another way to derive a transport 
equation for k (cf. chapter 3.5) is taking the trace (setting i = j) of (3.95). 
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However, in Reynolds stress models the turbulent viscosity hypothesis is not needed 
to close the mean flow equations and hence, νt is basically an unknown quantity. 
Daly & Harlow (1970) proposed a generalized gradient-diffusion model given by 

i j
ij s k l

k l

u ukD c u u
x xε

⎛ ⎞′ ′∂∂ ⎧ ⎫′ ′⎜ ⎟= −⎨ ⎬⎜ ⎟∂ ∂⎩ ⎭⎝ ⎠
, (3.99)

where the diffusion coefficient is given in curly braces and cs is a model constant for 
which Launder (1990) suggests a value of cs = 0.22. However, it turns out that the  
anisotropic nature of the diffusion coefficient given by the model of Daly & Harlow 
in (3.99) might result in numerical instabilities. Hence, Lien & Leschziner (1994) 
suggest that it is more convenient to recover the definition of the isotropic turbulent 
viscosity coefficient given by (3.43) and use (3.98) as the general model for any 
diffusion term appearing in a Reynolds stress model. Using the generalized model 
(3.99), Lien & Leschziner (1994) derived a value of σk = 0.82 for the turbulent 
Prandtl number. 

Pressure-strain 

The most crucial part of the Reynolds stress models is the pressure-strain term Πij 
which disappears in the turbulent kinetic energy equation (Πii = 0) and is attributed 
to redistribute energy among the Reynolds stresses. The basic idea stems from a 
Poisson equation for the turbulent pressure fluctuations which is obtained by taking 
the divergence of (3.44) and shows that the fluctuating pressure field can be 
decomposed into a ‘rapid’ and a ‘slow’ pressure. The first of which will react 
immediately to a change in the mean velocity gradients and cause anisotropy among 
the Reynolds stresses while the second will redistribute energy much more slowly 
and leads to a return to isotropy. Following this idea Πij can be modeled by 

( ) ( )s r
ij ij ijΠ = Π +Π , (3.100)

where the slow and rapid parts are defined as 



3 Turbulence modeling 

57 

( ) 2
3

s
ij s i j ijC u u k

k
ε δ⎛ ⎞′ ′Π = − −⎜ ⎟
⎝ ⎠

, (3.101)

( , )
,

2
3

r P
ij r P ij ijC P Pδ⎛ ⎞Π = − −⎜ ⎟

⎝ ⎠
, (3.102)

( , )
,

2
3

r G
ij r G ij ijC G Gδ⎛ ⎞Π = − −⎜ ⎟

⎝ ⎠
. (3.103)

The model constants are given by Cs = 1.8, Cr,P = 0.6 and Cr,G = 0.5 and P and G are 
defined as the traces of the according tensors Pij and Gij, respectively. Hence, 

1 1
2 2ii iiP P G G= = ,  . (3.104)

This is the basic model for the pressure strain term and goes back to the suggestions 
of Launder et al. (1975) who combined the proposals of Rotta (1951) for the slow 
term and Naot et al. (1970) for the rapid shear production term. Later the model was 
extended by Gibson & Launder (1976) to account for the effects of buoyancy with 
the rapid buoyancy production term. 

While the form of the slow pressure-strain term is generally agreed the rapid shear 
production term has been intensively discussed. This can be best explained if Πij is 
written in a more general form (see e.g. Speziale (1991), Pope (2000)) as 

1 2 3 4 5ij ij ij ij ij ijc b c kS c k c k cεΠ = − + + Σ + Ζ + Γ , (3.105)

where bij is the normalized anisotropy tensor defined as 

2 3
2 2

ij i j ij
ij

a u u k
b

k k
δ′ ′ −

= = . (3.106)

and the other tensors are given by 

2
3ij ik kj jk ki kl lk ijS b S b S b δΣ = + − . (3.107)
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ij ik kj jk kib bΖ = Ω +Ω . (3.108)

2
3ij ij ij ijG G δ⎛ ⎞Γ = − −⎜ ⎟

⎝ ⎠
. (3.109)

with the tensors of mean strain and rotation rate Sij and Ωij given by (3.55) and (3.58), 
respectively. The first and last term on the right hand side of (3.105) recover the 
slow pressure-strain and the buoyancy production term of the basic model given by 
(3.101) and (3.103), respectively. The other three terms refer to the rapid pressure-
strain relation and account for an increase of anisotropy due to shear and vorticity in 
the mean flow field. 

There are many models that have been proposed to model the pressure-strain term. 
All of them can be written in the general form given by (3.105) and only differ in the 
model constants c1 – c5. Some of the models that have been developed for 
oceanographic applications are given in Table 3.7 at the end of this section. 

Buoyancy production 

The remaining term to be modeled is the buoyancy production Gij, which contains 
the still unknown buoyancy fluxes iuρ′ ′ . A very simple model assumption 
(Fluent (2005)) would be to apply the turbulent diffusion assumption (3.52) such 
that 

t
ij i j

t j i

G g g
x x

ν ρ ρ
σ

⎛ ⎞∂ ∂
= − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. (3.110)

However, this approach is rather unfavorable as it implies modeling the turbulent 
temperature and salinity fluxes in the mean transport equations (3.31) and (3.32) 
with the turbulent viscosity assumption using (3.36) and (3.37). Hence, the 
advantages that are gained for the mean momentum equations by solving the 
transport equations for the individual momentum fluxes might get lost if the 
transport equations for the density determining quantities are modeled on a lower 
level. 
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Therefore a more consistent approach is to solve additional transport equations for 
the turbulent temperature and salinity fluxes and to evaluate the total turbulent 
buoyancy flux from (3.50). As shown before the transport equations for temperature 
and salinity are very similar with the only difference being the diffusion coefficients. 
The same appears to be true for the turbulent fluxes and it is therefore sufficient to 
derive only one transport equation which will be done next for the turbulent 
temperature fluxes. 

3.6.2 Transport equations for turbulent temperature fluxes 

The transport equations for the turbulent temperature fluxes are derived in a similar 
way like the turbulent momentum flux equations above. First a transport equation 
for the temperature fluctuations T′ is needed which is achieved in a similar manner 
like the transport equation for u′ (3.44) and results in 

( )
2

i
j j T j

j j j j j

T T T T T uu u u
t x x x x x

κ
′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂′ ′+ + − = +

∂ ∂ ∂ ∂ ∂ ∂
, (3.111)

where the Coriolis terms have been neglected. Multiplying (3.111) by iu′ and (3.44) 
by T′, adding both together and averaging gives the transport equations for the 
turbulent temperature fluxes written as 
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 (3.112)
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Neglecting the Coriolis term (last term in line two) and the dissipation term (last line) 
− which is justified assuming high Reynolds numbers − (3.112) can be written in 
compact form as 

T T T Ti
i i i i

dT u D P G
dt
′ ′

− = + + Π , (3.113)

Also here the only term that needs no model assumptions is the production 
term T

iP all other terms will be modeled as described next. 

Diffusion 

The diffusion term T
iD is modeled in a similar manner like Dij above using the 

turbulent diffusion assumption. Assuming high Reynolds numbers and neglecting 
the molecular contributions the diffusion term is modeled by 

T t i
i

k T k

T uD
x x

ν
σ
⎛ ⎞′ ′∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
, (3.114)

where the turbulent Prandtl number can be adopted from the generalized gradient 
diffusion model (3.99) to be σT = 2.0 (cf. Rodi 1980). 

Buoyancy production 

The diffusion term T
iG contains the unknown correlation T ρ′ ′ which must be 

determined before this term can be evaluated. Recalling the definition of the 
turbulent buoyancy flux given by (3.50), the turbulent buoyancy fluctuations are 
accordingly given by  

T S
T S
ρ ρρ ∂ ∂′ ′ ′≈ +
∂ ∂

. (3.115)

As salinity has been neglected the buoyancy production term becomes 

2

0

T i
i

gG T
T
ρ

ρ
∂ ′= −
∂

. (3.116)
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However, this does not solve the problem yet as the temperature variance 2T ′  is still 
unknown. It can be determined from an additional transport equation which is 
derived in a similar way like the transport equation for turbulent kinetic energy (3.45) 
by multiplying (3.111) with T′ and averaging. Thus 

22 2 2 2

2 2j
j T j T

j j j j j j j

u TT T T T T Tu u T
t x x x x x x x

κ κ
⎧ ⎫′ ′∂′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ′ ′+ − − + = − −⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
, (3.117)

where the term in brackets on the left hand side covers turbulent and molecular 
diffusion. The first term on the right hand side represents production PT and the last 
term dissipation εT of 2T ′ . While the production term is known, the turbulent 
diffusion and the dissipation term require model assumptions. 

However, instead of solving yet another equation it can be assumed that the 
transport terms on the left hand side can be neglected and production and dissipation 
are in balance. The dissipation term is modeled as 

21T

T

T
c k

εε ′= , (3.118)

where cT is a model constant. With the equilibrium assumption PT = εT, the 
temperature variance can be expressed as 

2
T i

j

k TT c T u
xε
∂′ ′ ′= −
∂

. (3.119)

It should be noted that cT is not necessarily constant as pointed out by Schumann & 
Gerz (1995). However, as no proper definition for this quantity has been found yet it 
is assumed to be a constant in all models that have been derived so far. 

Pressure-buoyancy 

Although temperature or buoyancy and the rate of strain are somewhat different in 
nature the pressure-buoyancy term T

iΠ is also modeled in a similar manner like Πij 
above. In the general form this is 



3 Turbulence modeling 

62 

1 2 3 4
T T T T T T
i i ij i ij i ic T u c S T u c T u c G

k
ε ′ ′ ′ ′ ′ ′Π = − + + Ω − , (3.120)

where the first term accounts for the return to isotropy and the last term for the 
buoyancy production according to the first and last term in (3.105). The other two 
terms account for the increase of anisotropy due to shear and vorticity in the mean 
flow field. The model constants for different second moment closures are presented 
in the next section. 

3.6.3 Compilation of model constants 

As shown above the major assumptions made in Reynolds stress models are in the 
modeling of the pressure-strain and pressure-buoyancy terms. Several models have 
been proposed in the past and all of them only differ in the specific assumptions 
made on these terms. Hence, the only difference between the models is expressed 
through the model constants introduced above. Umlauf & Burchard (2005) reviewed 
the state of the art in second moment closures for geophysical applications recently, 
comparing many different models for which the constants of the pressure-strain and 
of the pressure-buoyancy term are compiled in Table 3.7 and Table 3.8, respectively. 
Note that the notation used here is slightly different from that in Umlauf & Burchard 
(2005). 

 

 c1 c2 c3 c4 c5 

Gibson & Launder (1978) 3.600 0.800 1.200 1.200 0.500 
Mellor & Yamada (1982) 6.000 0.320 0.000 0.000 0.000 
Kanta & Clayson (1994) 6.000 0.320 0.000 0.000 0.000 

Luyten et al. (1996) 3.000 0.800 2.000 1.118 0.500 
Canuto et al. (2001) A 5.000 0.800 1.968 1.136 0.400 
Canuto et al. (2001) B 5.000 0.698 1.966 1.094 0.495 

Cheng et al. (2002) 5.000 0.798 1.968 1.136 0.500 

Table 3.7: Model constants in the pressure-strain term for different Reynolds
stress models. 
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 1
Tc  2

Tc  3
Tc  4

Tc  Tc  

Gibson & Launder (1978) 3.000 0.333 0.333 0.333 1.600 
Mellor & Yamada (1982) 3.728 0.000 0.000 0.000 1.220 
Kanta & Clayson (1994) 3.728 0.700 0.700 0.200 1.220 

Luyten et al. (1996) 3.000 0.333 0.333 0.333 1.600 
Canuto et al. (2001) A 5.950 0.600 1.000 0.333 1.440 
Canuto et al. (2001) B 5.600 0.600 1.000 0.333 0.954 

Cheng et al. (2002) 5.520 0.213 0.357 0.333 1.640 

Table 3.8: Model constants in the pressure-buoyancy term for different Reynolds
stress models. 

Like the LES above the Reynolds stress models are not of major concern for this 
thesis and will only serve for a comparison in the simulation of the unstratified flow 
around a cylinder in chapter 5. Therefore the details of the individual models given 
in Table 3.7 and Table 3.8 will not be discussed any further and can be taken from 
the specific papers or from Umlauf & Burchard (2005). 

However, the quite thorough derivation of the equations and model assumptions 
made in a Reynolds stress model was necessary in order to introduce the algebraic 
stress models in the next chapter which will be used as a reference in the discussion 
about stratified flows in chapters 6 and 7. 

 

 

 

 

 

 



3 Turbulence modeling 

64 

3.7 Algebraic Stress Models 

The application of Reynolds stress models is computationally extremely expensive 
as in the general three dimensional case even for a constant density at least 7 
differential equations (6 for turbulent momentum fluxes + 1 for the dissipation rate) 
have to be solved. Therefore it would be desirable if the turbulent fluxes could be 
determined by algebraic expressions which can be computationally much cheaper 
evaluated and yet keep the level of modeling. 

The transport equations for the turbulent fluxes (3.121) and (3.113) contain 
derivatives of the transported quantities only on the left hand side while the right 
hand side is exclusively given by algebraic terms like jT x∂ ∂ or i ju u′ ′ . Hence, if the 
left hand side can be approximated by an algebraic expression the entire equation 
becomes algebraic. Thus the fundamental idea of the algebraic stress models (ASM) 
is to find an appropriate algebraic model for the advective and diffusive transport 
terms on the left hand side. 

This basic idea was first introduced by Rodi (1976) and assumes that the ratio of 
transport in the Reynolds stress equations (3.121) and transport in the turbulent 
kinetic energy equation (3.48) is equal to the ratio of Reynolds stresses to turbulent 
kinetic energy. This provides an algebraic expression for the left hand side of the 
turbulent momentum flux equations (3.121) defined by 

( )i j i j
ij

du u u u
D P G

dt k
ε

′ ′ ′ ′
− = + − . (3.121)

An according approach applied to the turbulent temperature flux equations (3.113) 
yields 

( ) ( )2

1 1 1
2

T T Ti
i i

dT u D T u P G P
dt k T

ε ε
′ ′ ⎛ ⎞′ ′− = + − + −⎜ ⎟

⎝ ⎠
, (3.122)

where the second term on the left hand side vanishes due to the assumption PT = εT 
made in the derivation of (3.119). 
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Inserting the approximations (3.121) and (3.122) into the transport equations (3.96) 
and (3.113) results in a nonlinear algebraic equation system which implicitly 
determines the turbulent fluxes. However, if the model assumptions introduced in 
the preceding chapter are inserted the equations become rather complicated and 
tedious to solve (see e.g. Burchard & Baumert (1995)). Hence, it is useful to make 
some simplifications for a practical applicability of the ASM. 

All models given in Table 3.7 and Table 3.8 have been transformed to algebraic 
stress models by the individuall authors, assuming that turbulence is in equilibrium. 
This implies that production and dissipation are in balance (P + G = ε) and hence, 
the left hand side of the transport equations completely vanishes. Therefore the 
resulting equation system is linearized and things become much easier. Making 
further use of the boundary layer approximation by assuming that horizontal scales 
are much larger than vertical scales which is at least justified in shallow coastal 
waters, it turns out that the remaining turbulent fluxes can be simply expressed as 

2k uu w c
zμ ε

∂′ ′ =
∂

, (3.123)

2k vv w c
zμ ε
∂′ ′ =
∂

, (3.124)

2k Tu T c
zμ ε

∂′ ′ ′=
∂

, (3.125)

where it has been assumed that the vertical coordinate is defined by the z-axis (cf. 
chapter 2.4). Compared to the definition of the turbulent fluxes using the turbulent 
viscosity assumption (3.34) and (3.36) it can be seen that (3.123) − (3.125) imply the 
definition of turbulent viscosity and turbulent diffusivity which are given by 

2

t
kcμν
ε

= , (3.126)

2

t
kcμν
ε

′ ′= . (3.127)
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However, in contrast to the similar definition (3.43), cµ is not a constant like in most 
two equation models but a function of the squares of the turbulent shear number η, 
given by (3.62), and a turbulent buoyancy number: 

2
2

2s
k Sα
ε

= , (3.128)

2
2

2N
k Nα
ε

= . (3.129)

The square of the shear frequency S as defined by (3.61) simplifies under the 
boundary layer approximation to 

2 2
2 u vS

z z
∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. (3.130)

Accordingly N is defined as a buoyancy frequency (also referred to as Brunt Väisälä 
frequency) and given by 

2

0

gN
z
ρ

ρ
∂

= −
∂

. (3.131)

The equilibrium assumption and the boundary layer approximation indeed simplify 
the problem, however, the derivation of the stability functions cμ  and cμ′  remains 
quite complex, although it is straightforward. Hence, here only the final outcome is 
presented and the details can be found e.g. in Umlauf & Burchard (2005) or the 
original papers. 

The stability functions for all models given in Table 3.7 and Table 3.8 can be 
expressed as 

0 1 2
2 2
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where the constants n0 − n2, 0
Tn − 2

Tn and d0 − d5 are exclusively determined by the 
constants c1 − c5, 1

Tc − 4
Tc  and cT which were introduced for the modeling of the 

pressure-strain and pressure-buoyancy terms in the preceding chapter. Hence, all the 
information that can be gained from a complete Reynolds stress model is now 
comprised in compact form in the stability functions.  

However, the Reynolds stresses can not be determined by (3.123) − (3.125) unless 
the turbulent kinetic energy and the dissipation rate are not known. Therefore an 
ASM requires the solution of two additional transport equations to determine k and ε 
and can therefore basically regarded as a two equation model with a (mean and 
turbulent) flow field dependent definition for the turbulent viscosity and diffusivities. 
Like in the two equation models usually the first equation is reserved for the 
transport of k while the remaining second equation can be solved for either quantity 
that determines a turbulent length scale. 

As shown by Umlauf & Burchard (2003) all standard turbulence models given in 
chapter 3.5 can be expressed in a generic form (this fact was already used in the 
derivation of the SST k-ω model), which enables a unique comparison of the 
different approaches. They illustrated that in the equilibrium situation when 
production equals dissipation there is no big difference which quantity is used for 
the second equation. However, as also demonstrated by Umlauf et al. (2003) there 
are situations in which the k-ω model seems to be superior to the k-ε model.  

In this thesis the main emphasis is on the classical two equation models given in 
chapter 3.5 and the ASM are only of minor concern. However, as they can be 
thought of to be somehow more elaborate they provide a good reference which will 
be used in chapters 6 and 7. 
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3.8 Near wall treatment 

All equations presented so far are generally valid in the free stream. When a rigid 
wall is present, however, some modifications have to be made to account for the 
presence of the wall. Here, it will be assumed that walls are stationary, i.e. they do 
not move like e.g. impellers, and that they are impermeable, meaning that nothing 
will leave or enter a domain through a wall. In other words there will be no fluxes 
through a solid wall (including temperature fluxes, i.e. the wall will have the same 
temperature as the surrounding fluid). This is the case if the velocity normal to the 
boundary is zero and if the normal wall gradients of all other variables are zero, too. 
Mathematically this can be expressed in form of a Dirichlet boundary condition for 
the velocity and a Neumann boundary condition for other variables in the form 

0i iu n = , (3.134)

0i

i

n
n
φ∂

=
∂

, (3.135)

where ni denotes the unit normal vector to the boundary and φ stands for any 
variable, like pressure, temperature, etc.. Equation (3.134) is sometimes referred to 
as ‘slip’ boundary condition as the fluid is still allowed to move tangentially to a 
wall. However, physical evidence suggests that a fluid particle which is in contact 
with a wall must have the same velocity like the wall (which is assumed to be zero, 
here). This requirement immediately leads to the ‘no slip’ boundary condition where 
in addition to (3.134) it is required that all velocities at the wall are zero: 

0iu = . (3.136)

In case of a DNS, (3.135) and (3.136) are the only wall boundary conditions 
required as all turbulence scales are resolved. However, if a turbulence model is 
used additional boundary conditions for the turbulent quantities must be defined.  

Before continuing with the boundary conditions for the specific turbulence models it 
is useful to recall the structure of the mean velocity profile in a turbulent boundary 
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layer as first postulated by Prandtl (1925). The flow is assumed to be parallel to the 
wall which is along the x-axis and the distance to the wall increases in y-direction. 
The velocity profile is a function of wall distance and solely specified by density ρ, 
viscosity µ and wall shear stress τw given by the stress strain relationship (2.3): 

0
w

y

du
dy

τ μ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (3.137)

Near the wall the viscous stresses will dominate and Reynolds stresses (turbulence) 
will be of minor importance. Therefore it is useful to define viscous scales, i.e. 
appropriate velocity and length scales in the near-wall region. These are the friction 
velocity 

wuτ
τ
ρ

= , (3.138)

and the viscous length scale 

w uν
τ

ρ νδ ν
τ

= = . (3.139)

With these scales the actual velocity and wall distance can be given in non-
dimensional form as 

uu
uτ

+ = , (3.140)

and 

yuy τ

ν
+ = . (3.141)

The ‘law of the wall’ suggests that the non-dimensional velocity u+ is a function of 
the non-dimensional wall distance y+ 

( )u f y+ +=  (3.142)
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and is valid in the ‘inner layer’ of the wall. In the ‘outer layer’ viscosity plays a 
minor role and turbulence will dominate the mean velocity profile shape. However, 
as the emphasis here lies on the boundary conditions, the outer layer is not regarded 
further. 

The inner layer can be subdivided in three distinct regions. The first is the ‘viscous 
sublayer’ which is the region right next to the wall where molecular viscosity 
dominates. It extends over 0 < y+ < 5 where the no slip condition (3.136) and the 
definition of the wall shear stress (3.137) suggest that 

   for    0 5u y y+ + += < < . (3.143)

The third region is the ‘logarithmic layer’ a few distances further away from the wall 
at y+ > 30 where the direct effects of the molecular viscosity become negligible. 
Simple dimensional analysis shows that the velocity gradient in this region is 

1 u
y

du
dy

τ

κ
= . (3.144)

which after integration and inserting the non-dimensional variables becomes 

1 ln       for    30u y B y
κ

+ + += + > , (3.145)

where κ ≈ 0.41 is the von Kármán constant named after von Kármán (1930) who 
introduced this logarithmic law of the wall. The constant of integration is found 
from experiments (Nikuradse (1932)) to be in the order of B ≈ 5.5. 

In between the ‘viscous sublayer’ and the ‘logarithmic layer’ is the ‘buffer layer’ 
where viscosity and turbulence are either important. A smooth transition between 
the two surrounding layers given above implies 

2 ln  3.05     for    5 30u y y
κ

+ + += − ≤ ≤ . (3.146)

A mean velocity profile obeying the ‘law of the wall’ as described above is shown in 
Figure 3.2. 
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Figure 3.2: Law of the wall. Velocity profiles in the inner region of a turbulent 
boundary layer. Left: non-dimensional log-plot. Right: dimensional 
velocity profile. 

The ‘law of the wall’ for the mean velocity profile derived so far is actually only 
valid for completely smooth walls. However, in reality every wall will have a 
specific roughness and the question remains how it will influence the velocity 
profile. Roughness is in general a random variation of the surface structure, but as 
shown by Nikuradse (1933) in his classical pipe flow experiments, the effect of 
roughness can be interpreted by equally ordered elements of a specific size giving an 
equivalent roughness. If the size of the elements is very small such that all elements 
do not extent the viscous sublayer this is termed the ‘hydraulically smooth’ case in 
which roughness will have no effect on the mean velocity profile and the law of the 
wall above applies. On the other hand, in the ‘hydraulically rough’ case, roughness 
elements are large enough to protrude out of the viscous sublayer. This will cause a 
wake behind each element and the corresponding drag force on the roughness 
elements will make viscosity negligible for determining the mean velocity profile 
(and the drag on the surface). In this case the viscous sublayer does not exist and the 
mean velocity profile is solely given by a logarithmic law, which is defined by 

2
1 ln

s

yu B
kκ

+ = + , (3.147)

where the wall distance now is consequently scaled with the equivalent roughness 
height ks and the constant B2 ≈ 8.5 is obtained from the data of Nikuradse (1933). 
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A universal law of the wall can be given in terms of a non-dimensional roughness 
length sk + which is normalized by the friction velocity and the viscous length scale to 
give 

s
s

k uk τ

ν
+ = . (3.148)

The universal law is defined by 

1 lnu y B B
κ

+ += + − Δ , (3.149)

which is actually the law of the wall for smooth walls (3.145) with the additional 
constant ΔB which depends on sk + to account for the effects of surface roughness. If 
the influence of roughness is divided in three categories, ‘smooth’, ‘rough’ and 
‘transitional’, the additional constant ΔB can be given by 
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, (3.151)

     ( )90
  rough

sk + >
     : ( )1 ln 1 s sB c k

κ
+Δ = + . (3.152)

 
It is readily seen that ΔB = 0 in the ‘hydraulically smooth’ case immediately 
recovers (3.145). The constant cs appearing in (3.151) and (3.152) is intended to 
adjust the constant B2 in (3.147) to account for non-uniform roughness elements. 
Setting cs = 1/4 and inserting (3.152) into (3.149) will recover (3.147) based on 
Nikuradse’s data. 

Before determining the wall boundary conditions for each of the turbulence models 
in detail a general distinction should be discussed first. As seen above the near wall 
region is subdivided in different regions each of which obeys a specific ‘law of the 
wall’ for the mean velocity. From a numerical modeling point of view the question 
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arises whether it is necessary to completely resolve the boundary layer down to the 
viscous sublayer or if it might be sufficient to bridge the viscosity affected region 
and apply boundary conditions that are valid in the logarithmic region. The first 
approach is computationally much more expensive as the steep gradients below the 
logarithmic layer have to be resolved. However, if the transported equations for the 
turbulent quantities can be integrated down to the wall this ‘near wall modeling’ 
approach is likely to give better results in any cases in which the bridging of the 
viscosity affected region is not appropriate. 

3.8.1 Near wall treatment for k-ε models 

Standard wall functions 

As pointed out above the idea of the wall function approach is to bridge the viscous 
sublayer and to provide accurate boundary conditions that are valid in the 
logarithmic layer. This means that the boundary conditions to be described next are 
applied at a location y = yp that is located around y+ > 30, where the subscript p 
denotes the point at which quantities are evaluated. From a numerical point of view 
yp indicates the distance of the grid point closest to a wall. 

The boundary conditions for the mean velocities are readily obtained from the 
generic log-law given by (3.149). Inserting these definitions into the transport 
equations for k and ε and assuming equilibrium between production and dissipation 
of turbulent kinetic energy (P = ε) in the logarithmic region k and ε are given by 

2

1 2

uk
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τ

μ

= , (3.153)

3u
y
τε

κ
= . (3.154)

However, rather than applying these equations directly as Dirichlet boundary 
conditions it is more convenient to provide boundary conditions that are numerically 
more robust and revert to the above relations under the ideal conditions. This can be 
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achieved if the frictional velocity uτ which is governed by the mean velocity gradient 
(cf. (3.137) and (3.138)) is replaced by a nominal frictional velocity that is based on 
turbulent quantities. From (3.153) the nominal frictional velocity can be written as 

* 1 4 1 2
pu c kτ μ= . (3.155)

The corresponding estimates of y+ and sk + then become 
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= , (3.156)
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and the log-law for the nominal mean velocity can be defined by 

* * *1 ln  p pu u y B Bτ κ
⎛ ⎞= + − Δ⎜ ⎟
⎝ ⎠

. (3.158)

The actual velocity is finally obtained from the fact that the ratio of nominal 
quantities is the same as the ratio of actual quantities, thus 

*
* p
p

u u
u

u
τ

τ

= . (3.159)

While the transport equation for k is solved for the whole domain with a Neumann 
boundary condition at the wall 

0k
n
∂

=
∂

, (3.160)

the dissipation rate ε at the wall is explicitly defined by (3.153) and (3.154) and is 
given by (see e.g. Fluent (2005) or Pope (2000)) 

3 4 3 23
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μτε
κ κ

= = . (3.161)
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Two-layer model 

As the transport equations for k and ε are derived for high Reynolds number flows 
they cease to be valid in the viscosity affected near wall region. One possibility to 
avoid the discrepancies of the wall function approach described above is to employ a 
low Reynolds number model (e.g. Patel et al. (1985)) where the model constants are 
modified to account for the viscous effects in the near wall region. Although this  
approach allows for resolving the complete boundary layer down to wall the 
computational requirements are very high as the numerical grid at the wall must be 
fine enough to account for the steep gradients, especially those of the dissipation rate. 

An alternative way is to use a one equation model in the near wall region which only 
solves a transport equation for turbulent kinetic energy and determines a turbulent 
length scale − which is well known in the near wall region − analytically. The 
dissipation rate is then found from (3.42). Therefore the idea of the two-layer model 
is to subdivide the flow domain into an inner − viscosity affected − region and an 
outer − fully turbulent − region. The demarcation between the two regions is 
determined by a turbulent Reynolds number based on the wall distance y: 

Re y
k y
ν

= . (3.162)

In the outer region (Rey > 200) the common equations can be applied while in the 
inner region a one equation model is solved. 

In the one equation model of Wolfstein (1969) the transport equations for 
momentum and turbulent kinetic energy are retained. However, the turbulent 
viscosity in these equations is determined from 

( )TL
t tf c L kμ μν = , (3.163)

where Lt is the turbulent length scale defined as 

3 4
tL c yμ κ−= , (3.164)
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and fµ is a damping function to account for the retarding effects of the wall on the 
turbulent momentum fluxes. It is given by 

Re1 y Af e μ
μ

−= − , (3.165)

with Aµ = 70 being a model constant. 

The turbulent dissipation rate can be analytically determined from k and Lt as 

3 2
( )TL

t

kf
Lεε = , (3.166)

where the damping function fε is given by 

Re1 y Af e ε
ε

−= − , (3.167)

with the model constant 3 4A cε μ κ−= . 

To allow for a smooth transition between the inner and outer region the tow-layer 
formulations of turbulent viscosity (3.163) and dissipation rate (3.167) are blended 
with the definitions in the outer region following a suggestion by Jongen (1992): 

( ) ( )(1 )FT TLφ λφ λ φ= + − , (3.168)

whereφ represents either µt or ε and the superscripts denote the fully turbulent (FT) 
or two-layer (TL) formulations. The blending function λ is given by 

Re 2001 1 tanh
2 40

yλ
⎛ ⎞−⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (3.169)

which will tend towards 0 at the wall and approaches 1 in the beginning of the outer 
region. 

In the traditional two-layer model the boundary layer is resolved down to the wall 
where the closest grid point is located at y+ ≈ 1 and the boundary conditions for 
velocity is given by the viscous law of the wall (3.143). However, a more general 
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approach where the nearest grid point at the wall can also be located in the 
logarithmic layer or in the buffer layer can be achieved if the formulations of the 
laminar (3.143) and the logarithmic (3.149) laws are smoothly blended. Following 
the suggestions of Kader (1981) the boundary condition for velocity can be defined 
as 

1
lam logu e u e u+ Γ + Γ += + , (3.170)

where the blending function is given by 

40.01( )
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. (3.171)

3.8.2 Near wall treatment for k-ω models 

In contrast to the k-ε model the k-ω model can be integrated down to the wall and 
the rather inconvenient approach of a low Reynolds number formulation or a two-
layer model as described above is dispensable. This simplifies the definition of 
boundary conditions enormously.  

The boundary conditions for the mean velocities are the same as defined in (3.170) 
for the two layer k-ε model. Also the transport equation for k is solved throughout 
the whole domain with a zero gradient Neumann boundary condition (3.160) at the 
wall. The boundary condition for ω is given explicitly as a Dirichlet boundary 
condition in the general form 

( )2*uτω ω
ν

+= . (3.172)

In the turbulent logarithmic region ω is given by 
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For the laminar near wall region ω+ it is defined as  
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 (3.175)

and the dimensionless roughness length is 

( )*max 1.0,s sk k+ = . (3.176)

Like for the mean velocity the laminar and turbulent wall laws for the specific 
dissipation rate are blended according to the definition given by (3.170). 

3.8.3 Near wall treatment for RSM and ASM 

In Reynolds stress models all boundary conditions are given explicitly as Dirichlet 
conditions. For the mean velocity and the turbulent dissipation rate either wall 
functions or the two-layer model as described in chapter 3.8.1 can be applied. The 
turbulent momentum fluxes are obtained by using the logarithmic law of the wall 
(3.149), neglecting the transport terms and assuming local equilibrium which is 
justified in the near wall region. Defining a local coordinate system, where n is the 
normal coordinate, t is the tangential coordinate and b is the bi-normal coordinate 
the Reynolds stresses in the wall adjacent cells can be obtained in terms of the 
frictional velocity from the following universal ratios (cf. Pope (2000)): 

2 2 2 25.1 1.0 2.3 1.0t t n n b b t bu u u u u u u u
u u u uτ τ τ τ

′ ′ ′ ′ ′ ′ ′ ′
= = = = −,   ,   ,   . (3.177)
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Alternatively it can be shown that close to a wall the Reynolds stresses are 
universally related to turbulent kinetic energy by (cf. Pope (2000)): 

1.098 0.247 0.655 0.255t t n n b b t bu u u u u u u u
k k k k
′ ′ ′ ′ ′ ′ ′ ′

= = = = −,   ,   ,   . (3.178)

However, this requires the solution of an additional transport equation for k which 
will be solved throughout the whole domain with a zero gradient Neumann 
boundary condition at the wall. 

In chapter 3.7 it was shown that an algebraic stress model can basically understood 
as a two equation model with a modification of turbulent viscosity and diffusivity 
determined algebraically from the underlying RSM. The boundary conditions for an 
ASM are those that apply to the chosen two equation model and are described above 
in chapter 3.8.1 and 3.8.2 in case of a k-ε model and a k-ω model, respectively. 
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4 Numerical methods 

The mathematical description of physical processes most often results in a set of 
(partial) differential equations like those discussed in the preceding two chapters. 
Numerical methods to solve these equations have been extensively developed over 
the last decades and today many of them can be assumed to be well established. The 
major emphasis of the present thesis is therefore on the physical processes and the 
resulting equations to describe them rather than the numerical methods for their 
solution. In fact, all simulations presented here were done with the commercial 
software package FLUENT (Fluent (2005)) which is based on the Finite-Volume-
Method. This chapter will therefore only give a short introduction to the basic idea 
of the Finite-Volume-Method and briefly describe some individual issues. For 
further details the reader is referred to the literature cited or might get a very nice 
overview about numerical methods for fluid dynamics in Ferziger & Peric (2002) or 
the Finite-Volume-Method in particular in Versteek & Malalasekera (1996). 

The starting point for the Finite-Volume-Method is the volume integrated form of 
the differential equations. All balance equations derived in the preceding chapters 
have a very similar form depicting the transport of the conserved variable by 
advection, diffusion and due to source terms. The general form of an integrated 
transport equation can be written as: 

d d d dj

j j jV V V V

u
V V V S V

t x x xφ φ

φφ φ⎛ ⎞∂∂ ∂ ∂
+ − Γ =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫ ∫ ∫ , (4.1)

where φ stands for the transported variable and φΓ and Sφ denote the diffusion 
coefficient and source terms for this variable. To better elucidate the association 
with the equations given above, Table 4.1 shows the individual settings for the 
RANS equations, the salinity equation and the equation for turbulent kinetic energy. 
Please note, that the overbar to denote for the averaging of the variables has been 
omitted for simplicity. 
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 φ  φΓ  Sφ  

continuity 1 0 0 

momentum ui ( )tν ν+  
0 0

1
i ij j

i

p g F u
x

ρ
ρ ρ

∂
− + +

∂
 

salinity S t
S

S

νκ
σ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
 0 

turbulent kinetic energy k t

k

νν
σ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
 P G ε+ −  

Table 4.1: Variable settings for the general transport equation (4.1). 

Using Gauss’ theorem, which shows that the volume integral of the gradient of a 
variable is equivalent to the surface integral of that variable, allows to eliminate the 
derivatives in the advective term and diffusive term and (4.1) can be rewritten as 

d d d dj j j
jV A A V

V u A A S V
t xφ φ
φ φφ∂ ∂

+ − Γ =
∂ ∂∫ ∫ ∫ ∫ , (4.2)

where Aj is the vector normal to a surface element. 

The basic idea to arrive at an algebraic equation system which can numerically be 
solved is to subdivide the computational domain into a finite number of control 
volumes (grid cells) and to evaluate (4.2) for each individual volume. A sketch of 
such a grid is shown in Figure 4.1 for a two-dimensional domain to simplify the 
following comments, but the extension to three dimensions is straightforward. The 
grid defines the boundaries of the control volume and all flow variables are stored in 
a computational node located in the center of each cell (collocated grid). Basically 
the shape of the cells is arbitrary but, as here, in most cases quadrilateral or 
triangular cells are used in two-dimensional domains and accordingly hexa- or 
tetrahedral cells in three-dimensional domains. 
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Figure 4.1: Definition sketch for the Finite-Volume Method (two-dimensional).  

The discretized form of the general transport equation (4.2) can be written as 

( )

( ) ( ) ( ) ( )

1 1
φ φ

φ φφ
= =

⎛ ⎞∂ ∂
+ − Γ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
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f f j

V u A A S V
t x

. (4.3)

where 

V   : volume of the cell 

fN   : number of faces of the cell 
( )f
jA   : normal area vector of face (f) 

( )f
ju   : velocity (face flux) vector at face (f) 
( )fφ   : value ofφ at face (f) 

( )( )f

jxφ∂ ∂  : gradient at face (f) 
 

As each variable is defined at the cell centers it can be interpreted to represent the 
average value for the corresponding cell and allows the volume integral to be 
evaluated by simply multiplying the variable with the cell volume. However, the 
evaluation of the discretized surface integrals requires the knowledge of the fluxes 
and gradients at the faces of the cell which are unknown a priori. They can be 

φ

 

( )f
jA
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determined by interpolation between ‘known’ cell-centered values which is most 
often done slightly different for the advective terms and the diffusion terms. 

The most obvious interpolation is linear between the cell-centered values of the 
neighboring cells yielding a ‘Central-Difference’ scheme for the face value which is 
second order accurate. This method is frequently used for the diffusion terms but 
might lead to numerical instabilities if applied to the advective terms. This is due to 
the dependence of the fluxes on the flow direction and might be avoided if only 
upstream cells are considered which leads to the wide variety of upwind schemes. 
The most simple of this group is the ‘First-Order Upwind’ scheme where ( )fφ  is not 
even interpolated but simply set to the cell-center value of φ in the neighboring 
upstream cell. However, this approximation is only of first order accuracy and 
associated with high numerical diffusion, therefore it should be avoided. A much 
better accuracy can be obtained by the ‘QUICK’ scheme (Leonard (1979)) where a 
parabola is fitted through the neighboring downstream cell and the two nearest 
upstream cells. 

At this point the Finite-Volume-Method is actually fully explained as the spatial 
discretization is complete. Following the above procedure the discretized transport 
equation (4.3) contains the unknown variableφ at the cell center and the unknown 
values in the surrounding cells. If the temporal derivative is ignored for a while the 
discretized transport equation in grid cell P yields a (linear) expression for variable 

Pφ in terms of neighboring variables nbφ which can be written as 

p nb nb
nb

a a bφ φ= +∑ , (4.4)

 where ap and anb are coefficients resulting from the interpolation schemes and b 
denotes the contribution of the source term. Similar equations can be written for 
each cell of the grid resulting in a set of algebraic equations with a sparse coefficient 
matrix. This linear equation system can then be solved by any suited algorithm and 
provide a solution for stationary transport of a scalar variable if the velocity field is 
known. However, the present problem is governed by more than one single equation 
and the transient term as well as the nonlinearity of the Navier-Stokes equations 
require some more comments. 
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The temporal discretization is best explained rewriting (4.3) as  

( )F
t
φ φ∂
=

∂
, (4.5)

where ( )F φ corresponds to all other terms in a form equivalent to (4.4). The 
temporal derivative can be easily discretized using backward differences based on 
known quantities at previous time levels. A first-order and second-order accurate 
discretization can be given by 

1 1n n n

t t
φ φ φ+ +∂ −⎛ ⎞ =⎜ ⎟∂ Δ⎝ ⎠

, (4.6)

1 1 13 4
2

n n n n

t t
φ φ φ φ+ + −∂ − +⎛ ⎞ =⎜ ⎟∂ Δ⎝ ⎠

, (4.7)

where Δt is the time step and superscript n denotes the current time level, n – 1 the 
previous time level and n + 1 the next (unknown) time level. No matter if (4.6) or 
(4.7) is used to discretize the temporal derivative the actual time discretization 
scheme depends on which time level the right hand side of (4.5) is evaluated. If the 
current (known) time level n is used this results into an explicit scheme which can 
directly be solved for 1nφ + , being the only unknown. Even if this might seem 
computationally quite efficient it possibly requires very small time steps depending 
on the flow velocity and the grid size according to the Courant-Friedrichs-Lewy 
(CFL) condition (Courant et al. (1928)). An unconditionally stable scheme with 
respect to the time step is obtained if ( )F φ is evaluated at the unknown time level 
n + 1. Then, however, also the right hand side contains the unknown variable 
and 1nφ + is defined by an implicit scheme, requiring an iterative solution. The 
equations corresponding to a first-order and second-order scheme are given by  

( )i n itFφ φ φ= + Δ , (4.8)

( )14 3 1 3 2 3i n n itFφ φ φ φ−= − + Δ , (4.9)

where iφ is initialized by nφ and after the iteration converged 1nφ + is finally set to iφ . 
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The computational effort for one time step is much higher with the implicit scheme 
as the equation system has to be solved several times until convergence is achieved. 
However, first, the time step can be chosen much larger than that for the explicit 
scheme such that the overall effort might be the same and secondly, the coupling and 
nonlinearity of the Navier-Stokes equations require iteration anyway. 

The above described procedure actually applies to any unsteady transport equation 
and can also be used to discretize the momentum equations. However, it appears that 
the fluxes in the advective terms as well as the pressure in the source term are not 
known a priori and must be obtained as a part of the solution. Furthermore, although 
pressure is an unknown variable there is no explicit equation for pressure to be 
determined (due to the incompressibility assumption, cf. chapter 2.2). Apart from the 
fact that the Navier Stokes equations pose a coupled set of equations this shows that 
their solution needs special considerations. Many algorithms have been proposed for 
the solution of the Navier-Stokes equations, the most common being SIMPLE 
(Patankar & Spalding (1972)), SIMPLEC (van Doormal & Raithby (1984)) and 
PISO (Issa (1986)). They are all based on the same idea and only slightly differ in 
some details. However, it is beyond the scope of this chapter to go through all these 
details and only the basic procedure will be shortly sketched. 

The starting point for all algorithms is to use the continuity equation as an equation 
for pressure, or more precisely for a correction to the pressure field. However, the 
momentum equations are still nonlinear and require an iterative solution by which 
the momentum equations and the pressure correction equation are solved 
sequentially. The basic algorithm can be summarized as follows: 

• Update velocity and pressure fields based on pressure correction (if the 
calculation has just begun an initial solution must be guessed). 

• Solve the individual momentum equations using the current values for 
pressure and face fluxes to update the velocity field. 

• Solve the pressure correction equation with the updated velocity field. 

• Check for convergence. 
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The implicit time discretization can be included in this iteration and the sequential 
solution of the Navier-Stokes equations suggests to incorporate the additional 
transport equations for turbulent quantities and salinity in the same manner. By that 
all the equations are solved iteratively for a given time step until the convergence 
criteria are met and although the equations are solved segregated from one another 
nonlinearity of the individual equations and inter-equation couplings are fully 
accounted for. The overall algorithm for the numerical solution of the present 
problem is sketched in Figure 4.2. 

 
 

Figure 4.2: Overview of the solution algorithm for the present problem.  
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All simulations presented in the following chapters were based on the following 
methods: Second-order time discretization, QUICK scheme for advective terms, 
PISO scheme for pressure-velocity coupling. For the sake of completeness it should 
be mentioned that the resulting linear equation systems are solved by a Gauss-Seidel 
algorithm in conjunction with an algebraic multigrid (AMG) method to accelerate 
the convergence of the solution. For further details about the solution of linear 
equation systems the reader is referred to the literature (e.g. Ferziger & Peric (2002), 
Briggs et al. (2000)). 

A final remark should yet be given on the total computational effort for the specific 
simulations of this thesis. The size of the equation systems and the effort for their 
solution increases with the number of grid cells needed to discretize the 
computational domain. While all simulations presented in chapters 5 − 7 could be 
done on a usual desktop PC with 1 CPU, the total number of grid cells needed to 
resolve the relevant features for the flow of a density current around a circular 
cylinder in chapter 8 is between 3-5·105 (cf. chapter 8.2). This problem size can no 
longer be handled on an ordinary desktop PC and requires the use of high 
performance computers. By that the whole problem is divided into many smaller 
ones which are solved parallel on many single CPUs. 

As the field of parallel computing is huge1 the specific issues will not be further 
discussed here, but the interested reader is again referred to the literature (see 
footnote). However, it should be mentioned that the present work would not have 
been possible without the ability to use the Hochleistungsrechner Norddeutschland 
(HLRN) kindly provided by the Norddeutscher Verbund für Hoch- und 
Höchstleistungsrechnen (www.hlrn.de). The simulations presented in chapter 8 were 
parallel computed on 16 CPUs (1.3 GHz Power4) and took about 2 days depending 
on the individual grid size. The parallel performance was about 90 %, i.e. the same 
simulations would have taken about 1 month on a usual desktop PC which clearly 
emphasizes the need for parallel computations. 

                                                                 

1 There is a special journal (Parallel Computing − Systems and Applications, published by 
Elsevier) and an annular conference (Parallel Computational fluid Mechanics, held since 
1992) only on this subject. 

http://www.hlrn.de/�
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5 Flow around a circular cylinder 

This chapter is dedicated to an introduction of the characteristics of the flow around 
a circular cylinder. Furthermore an extensive numerical model test is presented to 
determine the appropriate turbulence model and grid requirements for the 
simulations of gravity currents around a circular cylinder in chapter 8. 

5.1 Flow characteristics 

5.1.1 Governing parameters and different flow states 

It is generally agreed that the governing parameter for the flow around a circular 
cylinder is the Reynolds number based on the undisturbed velocity U∞ in front of the 
cylinder and the cylinder diameter d, 

ν
∞=

U dRe . (5.1)

However, several circumstances can influence the flow characteristics, in particular: 

• Free stream turbulence described by intensity ( ( )1 22 3I k U∞= ) and 
length scale ( 3 4 3 2L c kμ ε= ). 

• Roughness of the cylinder surface. 

• Vibration of the cylinder in any direction. 

• Presence of walls on one or either side of the cylinder d/B, where B is the 
distance of the cylinder from the wall. 

• Aspect ratio between length L and diameter of the cylinder L/d. 

• Aspect ratio between height H and diameter of the cylinder H/d when the 
cylinder has a free end. 
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For the present work the free stream turbulence and the aspect ratio are of special 
interest. The prior because of the bottom induced turbulence in the incoming flow 
and the latter because of the incoming velocity profile which is not shear free and 
will cause large scale vortical structures which are sensitive to the aspect ratio.  

The flow around bluff bodies is characterized by the detachment of the flow from 
the cylinder surface and the formation of free shear layers that eventually roll up and 
form vortices behind the structure in the wake. This pattern is also typical for the 
flow around a circular cylinder but some distinct features vary significantly with the 
Reynolds number. Zdrakovich (1997) gives an excellent review about experimental 
evidence for the flow around circular cylinders and suggests to express the Reynolds 
number dependence by different flow states, each of which can be split up into some 
subcategories. A summary of the different flow regimes is given in Table 5.1 which 
has been adopted from Zdrakovich (1997) as well as the following review.  

 

Abbr. State Regime Remin Remax 

1 no separation 0 4 - 5 
2 closed wake 4 − 5 30 − 48 L Laminar 
3 periodic wake 30 − 48 180 − 200 
1 far wake 180 − 200 220 − 250 

TrW Transition in 
Wake 2 near wake 220 − 250 350 − 400 

1 lower 350 − 400 1.0·103 − 2.0·103 
2 intermediate 1.0·103 − 2.0·103 2.0·104 − 4.0·104 TrSL Transition in 

Shear Layers
3 upper 2.0·104 − 4.0·104 1.0·105 − 2.0·105 
0 precritical 1.0·105 − 2.0·105 3.0·105 − 3.4·105 
1 single bubble 3.0·105 − 3.4·105 3.8·105 − 4.0·105 
2 two bubble 3.8·105 − 4.0·105 5.0·105 − 1.0·106 
3 supercritical 5.0·105 − 1.0·106 3.5·106 − 6.0·106 

TrBL 
Transition in 

Boundary 
Layers 

4 post-critical 3.5·106 − 6.0·106 (?) 
1 invariable 

T Fully 
Turbulent 2 ultimate 

(?) ∞ 

Table 5.1: Different regimes for the undisturbed flow around an infinitely long
cylinder after Zdrakovich (1997). 
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5.1.2 Laminar state and Transition-in-Wake state 

At very low Reynolds numbers the whole flow is initially laminar and will remain so 
up to Re ≈ 180 − 200. For creeping flows with Reynolds number below 4 − 5 there 
is even no separation. Separation initiates for slightly higher Reynolds numbers and 
forms a symmetrical closed wake behind the cylinder. With increasing Reynolds 
number the closed wake will begin to oscillate until the shear layers roll up and form 
a staggered array of laminar eddies, commonly known as the von Kármán vortex 
street. However, in the laminar regime the complete eddy street remains laminar and 
transition to turbulence first sets in in the TrW state for Reynolds numbers greater 
than about 180 − 200. Also in this regime the eddy formation is still laminar and 
turbulence eventually sets in the wake some distance away from the cylinder. 

The L and TrW states are restricted to rather very low Reynolds numbers which are 
only found in highly viscous fluids or for very thin structures in very slow flows. 
They are not of interest for the present investigation, but they allow for some nice 
visualization in laboratory experiments which can enhance the understanding of the 
general flow pattern and the sections that will follow. Figure 5.1 shows some of 
these visualizations for the two flow states discussed so far. The images are taken 
from Zdrakovich (1997). 

5.1.3 Transition-in-Shear-Layers state 

The TrSL state is characterized by the transition to turbulence taking place along the 
free shear layers while the boundary layers at the cylinder remain completely 
laminar. Due to the latter this state is often referred to as subcritical and the 
following state TrBL as supercritical. As in the TrW regime the transition in the 
shear layers also starts with the development of oscillations which are found at some 
distance from the cylinder in the TrSL1 regime. With increasing Reynolds number 
the transition waves will roll up in small eddies along the shear layers and finally 
roll up in alternating turbulent eddies forming a von Kármán vortex street in TrSL2 
regime. In the final TrSL3 a sudden burst to turbulence occurs in the free shear 
layers and the formation of eddies takes place close to the rear of the cylinder. 
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L1 Regime (Re = 1) 

 

L2 Regime (Re = 23) 

 
L3 Regime (from top to bottom: Re = 54, 65, 102) 

 
TrW1 and TrW2 Regime (top: Re = 190, bottom: Re = 340) 

 
 

Figure 5.1: Flow visualizations from various experiments for Laminar and 
Transition-in-Wake regimes. Adopted from Zdrakovich (1997).  

As the Reynolds number is increased from the lower (Re ≈ 2·104) to the upper 
(Re ≈ 2·105) bound of this regime the burst to turbulence and the eddy formation 
length move closer and closer to the cylinder until the transition to turbulence takes 
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place in the boundary layer and the next state begins. A visualization of the different 
flow patterns in the three TrSL regimes is shown in Figure 5.2, which again is 
adopted from Zdrakovich (1997). 

TrSL1 Regime (Re = 2·103) 

 
 

TrSL2 Regime (Re = 8·103) 

 
 

 TrSL3 Regime (Re = 1.1·105) 

 
 

Figure 5.2: Flow visualizations from various experiments for Transition-in-
Shear-Layers regime. Adopted from Zdrakovich (1997).  
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5.1.4 Transition-in-Boundary-Layers state and fully turbulent state 

When the transition to turbulence reaches the point of separation this will cause a 
turbulent boundary layer that is more stable to adverse pressure gradients such that 
the point of separation will move downstream. The later separation from the cylinder 
induces higher pressures on the back face which result in an overall reduction of the 
drag force commonly termed as ‘drag crisis’.  

The TrBL0 regime is characterized by the first onset of turbulence in free shear 
layers along the separation lines which disturbs the near wake and delays the eddy 
formation. However, the alternating eddy shedding is still prominent and the 
Strouhal number is constant. As the Reynolds number increases the point of 
separation will continuously move downstream causing a continuous decrease of the 
drag force. 

The precritical state is abruptly terminated by a sudden increase in the drag force 
and shedding frequency. This is attributed to the reattachment of the separated shear 
layers due to the increasing level of turbulence. The thin enclosed laminar region at 
the cylinder is termed a separation bubble and causes the increase of the pressure 
force. In the TrBL1 regime only one bubble is formed on any side of the cylinder, 
however once established it will not change the side anymore. This ultimately leads 
to asymmetric forces on the cylinder and asymmetric flow patterns in the wake in 
the one bubble regime.  

The asymmetry of the TrBL1 regime ends as abruptly as it started when a second 
bubble is formed on the opposite side of the cylinder at higher Reynolds numbers. 
This is the beginning of the TrBL2 regime which is characterized by the separation 
and reattachment of the shear layers on both sides of the cylinder forming two 
laminar separation bubbles. 

When the Reynolds number is high enough (Re ≈ 5·105 − 1·106) in the TrBL3 
regime the separation bubbles will be irregularly disrupted and fragmented along the 
cylinder span. The irregularity in the separation lines will completely suppress the 
periodic eddy shedding due to the highly three-dimensional transitional free shear 
layers. 
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Visualizations from laboratory experiments in the four flow regimes of the TRBL 
state mentioned so far are shown in Figure 5.3 which again is adopted from 
Zdrakovich (1997). 

TrBL0 Regime (Re = 2·103) 

 

TrBL1 Regime (Re = 2·103) 

 
 

TrBL2 Regime (Re = 8·103)  

 

 
 TrBL3 Regime (Re = 1.1·105) 

 
Figure 5.3: Flow visualizations from various experiments for Transition-in-

Boundary-Layers regime. Adopted from Zdrakovich (1997).  

It was believed for a long time that once the boundary layers became fully turbulent 
upstream of the separation that further increase in Reynolds number will not effect 
the flow features and that the TrBL3 state was the ultimate state of the flow. 
However, Roshko (1961) found by chance that periodic shedding reappears at 
Re ≈ 3.5·106, which is the beginning of the TrBL4 state. Beyond Re ≈ 6.0·106 the 
complete flow field around the cylinder is fully turbulent and further distinctions of 
subregimes have not been found yet. The upper bound for this regime is therefore 
Re ≈ ∞ and the (?) in Table 5.1 marks the uncertainty of the lower bound.  
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5.2 Definitions 

It was found above that the flow around a circular cylinder can be categorized by the 
dimensionless Reynolds number which generalizes the results of laboratory 
experiments and allows for an application to other scales. Hence, it is useful to 
prescribe the characteristics of the flow around a cylinder like the shedding 
frequency or the drag force in dimensionless numbers to give them a universal 
matter. Furthermore the periodic eddy shedding suggests that the flow field is 
decomposed in a mean part, a periodic part and a turbulent part to allow for an 
analytical description. All these issues will be addressed next. 

5.2.1 Strouhal number 

The alternating eddy shedding is characterized by a typical frequency which depends 
on the Reynolds number. The frequency is scaled by the free stream velocity u∞ and 
the cylinder diameter d to give the non-dimensional Strouhal number 

f dSt
u∞

= . (5.2)

It turns out that this number is not only universal but also a constant over a wide 
range of flow regimes. In the L3 regime the periodic eddy shedding sets in with very 
low frequencies and the Strouhal number will be in the order of St ≈ 0.1 in the 
beginning of the L3 regime. However, with increasing Reynolds number the 
Strouhal number will gradually increase over the laminar regime to reach a value of 
about St ≈ 0.2 when transition to turbulence appears in the wake (TW state). Up to 
the point when the first separation bubble forms at the cylinder in the TrBL1 regime 
the Strouhal number will keep this constant value. The laminar bubbles at the 
cylinder in the TrBL1 and TrBL2 regime cause an increase of the Strouhal number 
to be around St ≈ 0.4 although an exact value is hard to determine due to the 
transient nature of these regimes. As pointed out above eddy shedding ceases when 
the boundary layer is fully turbulent in front of separation in the TrBL3 regime and 
the Strouhal number will naturally vanish. As eddy shedding recovers in the TrBL4 
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regime the Strouhal number will be around 0.19 < St < 0.25, where the range reflects 
the uncertainties in the few measurements at this high Reynolds numbers. 

An extensive compilation of experimental data on the Strouhal number is given by 
Cantwell & Coles (1983) from which Figure 5.4 has been taken. 

 
Figure 5.4: Strouhal number dependence on Reynolds number for a circular 

cylinder (taken from Cantwell & Coles (1983)). 

Although the measurements show some scatter it is clearly visible that up to 
Re ≈ 3·105 the onset of TrBL1 the Strouhal number is quite constant around St ≈ 0.2. 
Also the rise of the Strouhal number in the bubble regimes can be identified. 
However, due to the scatter in the very few data points a definition of exact values is 
precluded.  

5.2.2 Drag and lift coefficients 

The force that the flow exerts on a cylinder is basically a combination of two 
mechanisms, skin friction and pressure distribution. Integration of the wall shear 
stress τw and hydrostatic pressure p over the cylinder surface gives the total force 
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d dw t n
A A

F x A px Aτ= +∫ ∫
G G G , (5.3)

where txG and nxG are the tangential and normal vectors to the surface. The total force 
vector is usually split up into its components normal and perpendicular to the mean 
flow direction giving the drag force FD and lift force FL , respectively. These forces 
can be non-dimensionalized by means of the dynamic pressure  

21
2

q uρ ∞=  (5.4)

and the projected area normal to the force which is always Ld in case of a circular 
cylinder, 

21 2
D

D
Fc
u Ldρ ∞

= , (5.5)

21 2
L

L
Fc
u Ldρ ∞

= . (5.6)

Both forces (and the coefficients) will oscillate due to the periodic eddy shedding. 
The lift force moves back and forth with the eddy shedding period while the drag 
force fluctuates twice as fast. The amplitude of the drag force is usually much 
smaller than that of the lift force which can induce significant swaying motions of 
the cylinder perpendicular to the flow. The mean of the lift force is always zero 
(except in the TrBL1 state) due to the symmetry of the mean flow field 
perpendicular to it. The mean pressure in front of the cylinder, however, is different 
from that at the cylinder back which imposes a mean drag force on the cylinder.  

Like the Strouhal number the mean drag coefficient is quite constant around cD ≈ 1 
over a wide range of flow states up to the onset of transition in the boundary layers 
aligned with the ‘drag crisis’ explained above. The mean drag coefficient obtained 
from various experimental data as compiled by Cantwell & Coles (1983) is shown in 
Figure 5.5. It can be seen that for Re < 5·103 in the early Transition-in-Shear-Layers 
state the drag coefficient is slightly less than 1 and increases then to obtain a 
constant value in the range 1.1 < cD < 1.3. The scatter of the data suggests the drag 
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coefficient to be quite sensible to influencing parameters like e.g. the roughness of 
the cylinder surface. However, the drag crisis occurring due to the onset of 
turbulence in the boundary layers is clearly identified between the TrBL0 and 
TrBL2 states. If the Reynolds number further increases the drag coefficient will 
slightly recover a value of about cD ≈ 0.4. 

 

 
Figure 5.5: Drag coefficient as a function of Reynolds number for a circular 

cylinder (taken from Cantwell & Coles (1983)). 

5.2.3 Triple decomposition 

As shown above in most situations the flow around a circular cylinder will have a 
strong periodic component due to the alternating shedding of eddies from the 
cylinder surface. To gain an analytical access to the physics of the circular cylinder 
flow it is useful to extent the Reynolds decomposition introduced in chapter 3.4. 
Instead of decomposing the flow variables only into a mean and a turbulent 
fluctuating part a third component is added which reflects the periodic motion. Thus, 

φ φ φ φ′= + +� , (5.7)
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whereφ represents any flow variable and the overbar, tilde and prime denote the 
mean, periodic and turbulent components, respectively. Incidentally, this 
decomposition was introduced by Reynolds & Hussain (1972) where the first author 
is not to be confused with Osborn Reynolds who introduced the decomposition 
given by (3.24) already in 1895. However, the name seems to be obligatory. 

To proceed further it is again necessary to define averages and the corresponding 
rules that apply to each of the components. Given a typical signal of N samples of a 
flow quantity that covers a few shedding cycles the global mean value is readily 
defined as 

1

1 N

n
nN

φ φ
=

= ∑ . (5.8)

For the determination of the fluctuating components it is also necessary to define an 
ensemble average according to the definition in (3.25). To account for the periodic 
motion one shedding cycle is subdivided into M nominally equal sections each of 
which containing Nm samples. The ensemble average is then represented by a phase 
average, meaning an ensemble average at constant phase: 

( )
1

1 1,2, ,
mN

i
im

m M
N

φ φ
=

= =∑ …      . (5.9)

Note that in chapter 3 the ensemble average was identified by an overbar which is 
here used for the global (temporal) mean while the ensemble (phase) average is 
marked by angled brackets. 

The fluctuating part of the periodic component is then given by 

φ φ φ= −� , (5.10)

and the turbulent component accordingly, 

φ φ φ′ = − . (5.11)

These definitions are subject to the following rules: 
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0

.

φ φ φ φ φ

φφ φ φ φφ φ φ φ φ φ φ

′= = =

′ ′ ′= = =

� �

� �

; ; ;

; ;
. (5.12)

Ignoring external forces in form of gravity or Coriolis forces the momentum balance 
for the mean flow at constant phase can be written as 

2

0

1 i ji i i
j

j j j i j

u uu u u p
u

t x x x x x
ν

ρ

′ ′∂∂ ∂ ∂ ∂
+ − = − −

∂ ∂ ∂ ∂ ∂ ∂
, (5.13)

which is exactly the same as the Reynolds averaged momentum balance (3.30) 
except for the neglect of gravity and Coriolis terms and the notation for the average. 
Hence, the mixing of momentum at constant phase is solely governed by the 
turbulent fluxes. However, inserting (5.10) into (5.13) and taking the global average 
yields the following momentum equation (cf. Reynolds & Hussain (1972)): 

( )2

0

1 i j i ji i
j

j j j i j

u u u uu u pu
x x x x x

ν
ρ

′ ′∂ +∂ ∂ ∂
− = − −

∂ ∂ ∂ ∂ ∂

� �
, (5.14)

which shows that the global mean flow is additionally mixed by the fluctuations of 
the periodic motion. 

5.3 Flow at Re = 140.000 

The flow around a circular cylinder is one of the most difficult tasks in numerical 
modeling. Not only because the distinct flow features strongly vary with Reynolds 
number as shown above, but also the point of separation from the cylinder is not 
clearly defined and depends on the right prediction of the adverse pressure gradient. 
As pointed out by Breuer (2000) high Reynolds number circular cylinder flow is a 
challenging test case and can be considered as the paradigm of complex flows. 

In view of the structure induced mixing of density currents, here, it is most 
important to accurately simulate the turbulence in the cylinder wake which is the 
major source for mixing as to be shown later. There have been very many laboratory 
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experiments on the flow around a circular cylinder most of which, however, 
exclusively concentrated on the bulk and mean effects like drag coefficient, 
shedding frequency or recirculation length. Moreover, the Reynolds numbers of the 
experiments were often limited by the laboratory facilities. One of the few 
experiments at moderate Reynolds number which concentrated on the turbulent flow 
field in the cylinder wake is that of Cantwell & Coles (1983). As such it has been 
chosen by the Advisory Group for Aerospace Research and Development (AGARD) 
to be a suitable test case for the validation of numerical models (AGARD (1998)). 
The complete well documented experimental data is provided on the internet 
(ftp://torroja.dmt.upm.es/AGARD) and has been used by several authors as a 
reference for their numerical models. For the present purposes this has the advantage 
that not only the laboratory measurements will serve for a comparison with the 
numerical model data but also the experience with other numerical simulations from 
the literature can help in the interpretation of the results in this work. These will be 
summarized next. 

5.3.1 Experimental data and other numerical simulations 

The experiments of Cantwell & Coles (1983) were carried out in a wind tank with a 
circular stainless-steel tubing of 2.97 m length and 10.14 cm diameter. Velocities 
were measured by a flying hot wire probe at various points in the wake of the 
cylinder. At each point measurements were taken over 1024 shedding cycles with a 
rate of 16 samples per period. Data was evaluated using the triple decomposition 
method described above and the presented results concentrated mainly on the mean 
velocity field and the correlations of the turbulent and periodic fluctuations at 
constant phase. The recirculation length behind the cylinder was determined from 
the mean velocity field averaging the results over all 16 distinct phases. Pressure 
measurements around the circumference of the cylinder showed a pressure 
distribution and a back pressure coefficient which is in a confidential range 
compared to the results of other experiments at similar Reynolds numbers. 

The angle of separation from the cylinder was estimated from the pressure 
measurements and defined as the point of inflection of the pressure distribution 

ftp://torroja.dmt.upm.es/AGARD�
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which led to a value of 77° measured from the stagnation point. Aschenbach (1968) 
found that in the Reynolds number regime between Re = 1·105 and Re = 2.6·105 the 
separation angle shows a very nonlinear behavior and varies between 72° and 94° 
with the minimum value at Re = 1.5·105. Son & Hanratty (1969) give a value of 78° 
at Re = 1·105 which confirmed the findings of Aschenbach (1968) and gives 
confidence to the value Cantwell & Coles (1983) which might have a small 
uncertainty of a few degrees. The Strouhal number of St = 0.179 determined by 
Cantwell & Coles (1983), however, is quite low compared to most other 
experimental data which suggest a value of St ≈ 0.2 (see Figure 5.4). This fact is also 
discussed by the authors and should be kept in mind in the comparison with 
numerical experiments. 

Recently, Djeridi et al. (2003) and Perrin et al. (2006) carried out PIV measurements 
of the flow around a circular cylinder at the same Reynolds number but in a confined 
channel with much smaller aspect ratios (L/D = H/D = 4.8). Even if these 
circumstances and the measurement techniques are quite different compared to those 
of Cantwell & Coles (1983) the presented results of the mean velocity field and 
particularly the turbulent quantities are very similar. This confirms the intrusive 
velocity measurements of Cantwell & Coles (1983) giving more confidence in their 
data and justifies using them as a reference for the validation of numerical models. 

One of the first numerical simulations were presented by Franke (1991) who used a 
two-dimensional Finite Volume formulation in cylindrical coordinates of the RANS 
equations which were closed by the standard k-ε model and a Reynolds stress model 
with the model constants of Gibson & Launder (1978) (see chapter 3.6, Table 3.7). 
For the near wall treatment at the cylinder Franke (1991) used the two layer 
approach for both turbulence models. The major outcome of this work is that the 
standard k-ε model underestimates the turbulent fluctuations (data for the periodic 
fluctuations were not presented) which ultimately leads to an overestimation of the 
recirculation length attributed to the too small dissipation in the free shear layers. 
The Reynolds stress model on the other hand gives a too small recirculation length 
probably because of the overestimation of the fluctuations in the wake. Although 
both models provide very different mean and turbulent velocity fields and 
consequently different pressure distributions around the cylinder they predict quite 
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similar Strouhal numbers which are in good agreement with the experimental data. 
This might lead to the conclusion that the Strouhal number is not necessarily related 
to the turbulence in the cylinder wake. 

Breuer (2000) has shown that LES is a very powerful tool in the simulation of the 
flow around a circular cylinder. He investigated the influence of different subgrid 
scale (SGS) models, different grid resolutions and different computational domain 
sizes on the numerical results and found a generally good agreement with the data of 
Cantwell & Coles (1983). A reduction of the SGS constant and hence the dissipating 
mechanism in the modeled portion of the turbulent flow field leads to a decrease of 
the backpressure and drag coefficients and an increase in the recirculation length. A 
similar behavior could be deduced from the results of Franke (1991) above. 

Although the LES approach seems to be superior to models based on the turbulent 
viscosity assumption this has to be paid with a very much higher computational 
effort. As in a LES a significant part of the turbulent flow field is directly resolved 
by the numerical grid this must be much finer than in case of turbulent viscosity or 
Reynolds stress models. Moreover, variations along the cylinder span can no longer 
be neglected and all simulations require a three-dimensional grid to account for the 
vortex stretching and the energy cascade in the resolved part of the turbulence 
spectrum. 

While the simulations of Franke (1991) were performed on an O-type grid with a 
radius of 20 cylinder diameters and 144 x 144 grid points, Breuer (2000) used also 
an O-type grid but with a smaller radius of 15 cylinder diameters and a finer 
resolution of 165 x 165 and 325 x 325 grid points, respectively. The cylinder span 
was always resolved with 64 grid points in these simulations such that the numerical 
effort was about 50 to 200 times larger than that for the simulations of Franke (1991). 

Lübcke et al. (2001) made a direct comparison of the LES and the RANS approach. 
For the subgrid scale of the LES a dynamic model was chosen as the results of 
Breuer (2000) indicate a slightly better performance of this approach compared to 
that with the classical Smagorinsky constant. The RANS equations were closed by 
the standard k-ω model and an explicit algebraic stress model (EASM). While the 
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RANS simulations were performed on a two-dimensional grid with a total of 18 000 
grid points, for the LES a three-dimensional grid was chosen with 64 layers along 
the cylinder span and a total of 2 600 000 grid points. The additional numerical 
effort for the LES, although not explicitly given in the paper, can be estimated to be 
two orders of magnitude bigger than that for the RANS simulations. 

Lübcke et al. (2001) did not present results for the turbulent and periodic 
fluctuations but the mean streamwise velocity along the centerline for the LES 
compares fairly well to the results of Breuer (2000) and the laboratory data although 
the mean drag coefficient and the backpressure coefficient are significantly 
underestimated. The best results were achieved with the EASM which did not only 
give a good agreement of the mean streamwise velocity but also compared well with 
the bulk parameters. The standard k-ω model on the other hand can be regarded as 
the worst in this comparison as it showed the same behavior like the standard 
k-ε model used by Franke (1991). Not only the recirculation length is significantly 
overestimated (which might indicate an underestimation of turbulence) but also the 
drag coefficient is much too low. Interestingly the Strouhal number is much higher 
than that determined by Franke (1991) which is not commented by the authors but 
should be kept in mind for the interpretation of the present results to be followed. 

The bulk parameters of the experiment of Cantwell & Coles (1983) and the 
numerical simulations from the literature presented above are compiled in Table 5.2. 
As mentioned above the Strouhal number of the experiment might be a bit too low 
and should be about St ≈ 0.2 which is confirmed by the presumably best numerical 
data with the LES of Breuer (2000) and Lübcke et al. (2001). The background 
pressure coefficients and recirculation lengths of Franke (1991) were not explicitly 
given and were estimated from figures. From the data given in Table 5.2 and the 
more specific results in each of the papers it might be concluded that the turbulent 
viscosity approach together with a two-equation turbulence model is not the best 
choice for the simulation of the flow around a circular cylinder. However, it will be 
shown in the present model tests that this is only true for the standard formulations 
and slight modifications (RNG k-ε, SST k-ω) improve the performance significantly. 
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Reference St αs [°] Dc  cpb Lr 

Exp., Cantwell & Coles (1983) 0.18 77 1.24 -1.21 0.44 

std. k-ε, Franke (1991) 0.22   − 0.72 ≈ -0.4 ≈ 1.9 

RSM, Franke (1991) 0.23 − 1.55 ≈ -1.5 ≈ 0.3 

LES, Breuer (2000) 
0.20     
−       

0.22   

92.6     
−       

95.2  

1.22     
−       

1.45   

-1.40    
−       

-1.76 

0.34     
−       

0.57 
LES, Lübcke et al. (2001) 0.2 92 0.68   -0.65 0.40 

std. k-ω, Lübcke et al. (2001) 0.3 − 0.41   − 1.19 

ASM, Lübcke et al. (2001) 0.22 − 1.16 − 0.59 

Table 5.2: Bulk parameters of the experiment of Cantwell and Coles (1983) and 
numerical simulations of other authors. 

5.3.2 Model setup 

The goal of the present analysis is to determine the numerical demands to predict the 
flow field around a circular cylinder as accurate as possible. These imply the 
necessary grid size and the appropriate turbulence model including the near wall 
treatment as explained in chapter 3.8. In view of the high Reynolds numbers 
associated with the simulations of a density current around a circular cylinder in a 
natural scale only turbulence models based on the turbulent viscosity assumption 
have been used as LES would require a too high numerical effort. 

Thus, it is sufficient to use a two-dimensional grid here and neglect the variations 
along the cylinder span as they are suppressed by the turbulence models anyway. 
The cylinder with a unit diameter 1 is placed at x = y = 0 in a computational domain 
that extents 6 diameters left, right and in front of the cylinder and 20 diameters in the 
cylinder wake. Two different regular grids have been used which are shown in 
Figure 5.6. Note that the coordinates have been nondimensionalized by the cylinder 
diameter according to (5.15) (see below). However, as the diameter had been chosen 
to be unity this is not important in the present context but for consistency all 
coordinates will be given in non-dimensional form denoted by capital letters. 
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                 Coarse grid 

 
                 Fine grid 

 
       Cylinder near field, coarse grid 

 

         Cylinder near field, fine grid 

 
Figure 5.6: Coarse and fine numerical grids used for the present simulations. 
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The grid is circular up to 3 diameters around the cylinder and then converted to the 
rectangular shape of the numerical channel. The finest resolution is in the vicinity of 
the cylinder to account for the wall boundary layer and the free shear layers shed 
from the cylinder surface. With increasing distance from the cylinder the numerical 
grid gets successively coarser while the grid size is kept constant after 6 diameters 
behind the cylinder where the resolution in the wake along Y = 0 is kept more 
compact compared to the less important side regions. 

The fine grid has twice the resolution of the coarse grid except in the near wall 
region where the distance of the closest grid point is governed by the near wall 
treatment method. Both the wall functions and the two layer approach as introduced 
in chapter 3.8 have been used. For the wall functions approach the non-dimensional 
wall distance should be slightly above y+ ≈ 30 while for the two layer approach it 
should be less than y+ ≈ 5. To fulfill these requirements on both grids identically the 
distance of the closest grid point to the cylinder surface has been chosen to be 
2.1·10-3 and 2.5·10-4 cylinder diameters for the wall function and the two-layer 
approach, respectively. As mentioned above the grid is successively coarsened with 
increasing distance from the cylinder, the stretching factor for the coarse grid being 
about fw ≈ 1.11 and for the fine grid about fw ≈ 1.06. The main characteristics of the 
different grids used in this study are summarized in Table 5.3. 

 
grid N y+ Δrmin fw 

WF coarse 3840 32 2.1·10-3 1.109 

WF fine 12800  32 2.1·10-3  1.0615 

TL coarse 4992   3   2.5·10-4   1.116 

TL fine 17280   3   2.5·10-4  1.0623 

Table 5.3: Characteristics of the different grids used for the simulations. Total 
number of grid cells N, maximum non-dimensional wall distance y+ , 
minimum wall distance Δrmin in cylinder diameters and stretching
factor fw in the near wall region. 

For the simulation of the turbulent flow field all two equation models as described in 
chapter 3.5 and the RSM as derived in chapter 3.6 with the coefficients of Gibson & 
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Launder (1978) have been used. It should been noted, that the distinction in the near 
wall treatment between the wall function and the two layer approach actually only 
applies to the k-ε models and the RSM. For the k-ω models the near wall region is 
always treated as depicted in chapter 3.8.2 but with different distances of the closest 
grid point to the cylinder.  

The boundary conditions at the outer boundaries are a velocity inlet at X = −6, a 
pressure outlet at X = 20 and symmetry (slip) conditions at the sidewalls (Y = ± 6). 
The turbulence parameters at the inlet are determined from an imposed turbulence 
intensity of I = 0.1 % and a turbulent viscosity ratio of µt/µ = 1. All simulations were 
started from scratch with zero velocities and turbulence and run so long until a 
periodic motion behind the cylinder established. Afterwards the runs were continued 
and statistics were accumulated over at least 40 shedding cycles.  

5.3.3 Present results 

The analysis of the present numerical results is basically split into three parts. First 
the bulk parameters like the Strouhal number, mean drag coefficient, recirculation 
length and separation angle shall give a first impression of the performance of each 
turbulence model and the influence of grid resolution and near wall treatment. The 
following comparison of the mean velocity field will help to confirm these first 
interpretations. Even if the bulk parameters and the mean flow field might be 
important in some applications the major interest here is on the right prediction of 
the turbulent and fluctuating flow field around the cylinder. Therefore this point will 
be discussed a bit more detailed at the end of this section. 

Bulk parameters 

The Strouhal number St is determined from the time series of the lift coefficient and 
given in Table 5.4 for all 24 model runs. It can be noted at first sight that this 
parameter is generally too high compared to the experimental data and the numerical 
results presented above. Only the simulations of Lübcke et al. (2001) with the 
standard k-ω model show a similarly high value. Concerning the near wall treatment 
or the grid resolution there is no clear tendency to be deduced from the Strouhal 
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numbers given in Table 5.4, but it is noteworthy that the SST k-ω model seems to 
perform even better than the RSM concerning this specific parameter. However, as 
the Strouhal number is of limited interest here, no more work has been put in a 
further investigation of the overall rather poor numerical prediction. 

 
grid std. k-ε RNG k-ε rel. k-ε std. k-ω SST k-ω RSM 

WF coarse 0.28 0.28 0.28 0.26 0.25 0.28 

WF fine 0.33   0.29 0.32   0.29 0.26 0.31 

TL coarse 0.27   0.31   0.31   0.27 0.26 0.29 

TL fine 0.28   0.34   0.37   0.31    0.27 0.31 

Table 5.4: Comparison of Strouhal number St for all 24 model runs. 

Like the Strouhal number the angle of separation which is given in Table 5.5 is 
generally overestimated quite significantly compared to the 77° determined by 
Cantwell & Coles (1983). In case of the k-ε models and the RSM there is only a 
minor improvement if the two layer approach is used instead of wall functions which 
indicates that none of them is really capable to reflect the physics in the boundary 
layer correctly. This is supported by the fact that the k-ω models which are 
integrated down to the wall show values comparable to the LES data of Breuer 
(2000) and Lübcke et al. (2001) if the boundary layer is adequately resolved (last 
row in Table 5.5). 

 
grid std. k-ε RNG k-ε rel. k-ε std. k-ω SST k-ω RSM 

WF coarse 115.4     117.6 115.6 117.0 109.0 116.5 

WF fine 114.8 118.2 114.7 120.0 111.1 116.7 

TL coarse 111.1 114.2 112.3 111.3 105.5 115.2 

TL fine 111.0 113.5 111.9 98.1 92.7 112.9 

Table 5.5: Comparison of separation angle αs for all 24 model runs. 

As shown in chapter 5.2.2 the mean drag coefficient Dc is evaluated from the 
pressure and skin friction around the cylinder where the latter only makes a few 
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percent of the overall drag force at this high Reynolds number. Thus, the mean drag 
coefficient is representative for the pressure distribution around the cylinder and an 
additional analysis of the backpressure coefficient is dispensable as could already be 
deduced from Table 5.2 above. The Dc values of the present analysis are shown in 
Table 5.6.  

 
grid std. k-ε RNG k-ε rel. k-ε std. k-ω SST k-ω RSM 

WF coarse 0.49   0.73   0.54 1.40 1.10 0.75 

WF fine 0.48      0.69 0.54 1.42 1.11 0.80 

TL coarse 0.44    0.41 0.39   1.16   0.83 0.66 

TL fine 0.48    0.40 0.39 1.20 0.87 0.70 

Table 5.6: Comparison of mean drag coefficient Dc for all 24 model runs. 

A comparison of the first and last two rows clearly shows that the overall grid 
resolution has rather no influence on the mean drag coefficient as might have been 
expected, because the pressure distribution is mostly governed by the near wall 
region. Accordingly, except for the standard k-ε model there seems to be a quite 
significant sensibility to the near wall treatment and corresponding grid resolution at 
the cylinder. The two layer approach and higher grid resolution in the boundary 
layer reduce the mean drag on the cylinder which is generally lower for the 
k-ε models and highest for the standard k-ω model.  

While all parameters regarded so far are not important concerning the fluctuating 
motions in the cylinder wake the recirculation length Lr which is actually derived 
from the mean flow field will give a first idea about the mixing of momentum. In 
section 5.3.1 above it was found that the higher the turbulent and periodic 
fluctuations the shorter the recirculation length as the shedding free shear layers will 
roll in earlier with increasing turbulence level. Table 5.7 summarizes the 
recirculation lengths for the present model runs. Compared to the data of Cantwell & 
Coles (1983) the standard k-ε and the realizable k-ε model overestimate the 
recirculation length. This is consistent with the findings of Franke (1991) and 
Lübcke et al. (2001) even if the values here are closer to the laboratory reference. 
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grid std. k-ε RNG k-ε rel. k-ε std. k-ω SST k-ω RSM 

WF coarse 0.86 0.41 0.79 0.10 0.32 0.46 

WF fine 0.91 0.42 0.86 0.12 0.28 0.42 

TL coarse 0.91 0.63 0.76 0.15 0.42 0.38 

TL fine 0.95      0.66 0.80 0.16 0.45 0.40 

Table 5.7: Comparison of recirculation length Lr for all 24 model runs. 

The RNG modification of the k-ε model on the other hand is in good agreement with 
the reference data if wall functions are applied. With the two-layer approach, 
however, Lr gets significantly larger indicating an underestimation of the fluctuating 
motions. The same tendency can be found for the k-ω models if the resolution of the 
boundary layer is increased. However, while the standard k-ω model always seems 
to overestimate the fluctuations (too small Lr) the SST k-ω model performs fairly 
well on the finest grid.  

Mean flow field 

After the bulk properties have been analyzed, now the mean velocities will be 
compared to the experimental data. For this purpose all quantities are normalized 
first. Lengths are normalized by the cylinder diameter d and velocities are 
normalized by the free stream (inlet) velocity u∞. Denoting the normalized mean 
quantities by capital letters, one obtains: 

; ; ;x y u vX Y U V
d d u u∞ ∞

= = = = . (5.15)

Figure 5.7 shows the normalized mean streamwise velocity U along the x-axis at the 
plane of symmetry (Y = 0). In each panel the results of all turbulence models for one 
specific grid are compared to the data of Cantwell & Coles which are represented by 
the open circles. At first sight it appears that all models, except for the standard 
k-ω model (to be discussed later), overestimate the velocity in the far field by about 
10 % which might be attributed to the delayed separation which imports momentum 
in streamwise direction into the wake and accelerates the flow. This argument is 
supported by a faster increase of the velocity after the separation bubble. 
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WF coarse grid WF fine grid 

TL coarse grid TL fine grid 

Figure 5.7: Normalized mean streamwise velocity U along the x-axis at Y = 0. 

The overall grid resolution only slightly alters the mean flow in the wake as can be 
seen by comparing the left and right panels. The most obvious difference is the 
slightly lower acceleration behind the separation bubble on the coarse grids which 
might be attributed to a higher numerical dissipation. The near wall treatment and 
the resolution in the boundary layer, respectively, have more influence on the results, 
which will be discussed considering the individual turbulence models. 

As could be expected from the analysis of the bulk parameters above the standard 
and the realizable k-ε model are very similar at least if wall functions are used. In 
case of the two-layer approach, however, they show a completely opposite behavior. 
While for the standard k-ε model the recirculation length increases (cp. Table 5.7) 
and the acceleration decreases, the recirculation length for the realizable model is 
almost constant and the velocity increase is slightly faster. The reason for that is an 
unrealistic high production of turbulent kinetic energy in front of the stagnation 
point which is a typical drawback of the standard k-ε model (cf. Bosch (1995)) and 
is especially severe with the two-layer approach. The realizable model also suffers 
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from this problem, but the effects are less extreme mainly due to the different 
formulation of the turbulent viscosity. 

The results with the RNG k-ε model are somewhat better compared to those with the 
other two of this class of models. The main reason for this superiority is the 
additional term in the ε equation which compensates the overproduction of turbulent 
kinetic energy. As could already be seen in the analysis of the bulk parameters, with 
the wall function approach the RNG k-ε model provides very similar results to those 
of the RSM which might be designated as the most elaborate of all models. However, 
if the two-layer approach is applied the overproduction of turbulent kinetic energy 
gets stronger with a similar effect like for the standard k-ε model. 

In contrast to the k-ε models neither the RSM nor the k-ω models tend to 
overestimate the production of turbulent kinetic energy in front of the cylinder. 
Therefore they seem to be better suited for the simulation of the flow around bluff 
bodies. Obviously the RSM and the SST k-ω model are in good agreement with each 
other and show almost similar results on all grids. The standard k-ω model, however, 
yet underestimates the turbulent kinetic energy which leads to increased periodic 
fluctuations and even an unrealistic reattachment of the free shear layers. This in 
turn causes the generally too short recirculation length and the somehow strange 
velocity profile in the upper right panel. As will be shown in the following section, 
due to the strong periodic motion the total fluctuating kinetic energy is significantly 
overestimated which again implies a higher momentum exchange and explains the 
lower velocity in the far field.  

Further support for the findings up to now can be gained from the normalized mean 
cross-stream velocity V in the wake. Figure 5.8 shows the profiles in a cross section, 
0.5 diameters behind the cylinder (X = 1) where the shear layers roll in and V is 
approximately at maximum. The standard and the realizable k-ε model clearly 
underestimate the maxima even if the two-layer approach shows some improvement 
for the realizable k-ε model. Again, the best agreement with the experimental data is 
found for the RSM and the SST k-ω model which slightly overestimate the maxima 
on the fine grids. The RNG k-ε model is comparable to the RSM if wall functions 
are used and underestimates the peak velocities in case of the two-layer approach. 
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WF coarse grid WF fine grid 

TL coarse grid TL fine grid 

Figure 5.8: Normalized mean cross-stream velocity V along the y-axis at X = 1. 

Due to the retarded separation all models predict a confined wake as can be seen by 
the velocity maxima which are closer to the line of symmetry than the experimental 
data. The higher velocities in the outer region are attributed to the acceleration of the 
flow in the wake that sucks in the surrounding fluid. 

Up to now it can be summarized that the standard k-ε model, the realizable 
k-ε model and the standard k-ω model do not represent the best choice for the 
simulation of the flow around a circular cylinder. As might have been expected, the 
results for the RSM as the most elaborate model compare fairly well with the 
experimental data despite the retarded separation and the resulting effects which are, 
however, a problem for all models considered here. The results for the RNG k-ε 
model are almost identical to those of the RSM as far as wall functions are used for 
the near wall treatment. Finally, the SST k-ω model, which provides a very similar 
mean flow field compared to the RSM, can be considered as the best model for the 
circular cylinder flow as it is slightly superior concerning the bulk parameters 
compared to the laboratory data. 
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Turbulent and periodic flow field 

As remarked in the introduction of this chapter the bulk properties and the mean 
flow field are of minor interest here, as it is the turbulence and fluctuating motion 
that will contribute to the additional mixing of density currents. The preceding 
discussion, however, provided a good insight into the general advantages and 
drawbacks of each turbulence model and will help in the interpretation of the 
following analysis of the turbulent and periodic flow field. 

Cantwell & Coles (1983) used the triple decomposition technique described above 
for the evaluation of their data. The same procedure was followed here in the 
analysis of the numerical results even if it might not be expected that a turbulence 
model will exactly reproduce the break-up into turbulent and periodic fluctuations as 
measured in the laboratory. But this is of minor importance, anyway, as on average 
momentum is mixed by the sum of both components as shown in (5.14). Therefore a 
turbulence model must be able to predict this sum correctly and not each component 
individually. However, as already mentioned above, both components interact with 
each other, such that a higher turbulent kinetic energy will decrease the periodic 
motion and vice versa.  

Following the naming convention in the preceding section the normalized mean total 
momentum fluxes are denoted by  

2 1,2i j i j
i j

u u u u
u u i j

u∞

′ ′ +
= = =

� �
 (5.16)

and the normalized mean turbulent, periodic and total fluctuating kinetic energies 
are defined as 

2 2

3 3 3; ; 1,2
4 4 4

i i i i
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u u∞ ∞

′ ′
= = = + = =

� �
. (5.17)

Franke (1991) and Breuer (2000) compared their numerical results with the data of 
Cantwell & Coles (1983) for each of the individual momentum fluxes. However, 
due to the number of different grids and turbulence models that have been 
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investigated here, a detailed discussion of the momentum fluxes would go beyond 
the scope of this section. Thus, the present analysis is restricted to the fluctuating 
kinetic energy as its turbulent part is a direct outcome of all two equation models 
and, as can be seen from (5.17), this quantity is representative for the sum of the 
normal stresses. 

Figure 5.9 shows the normalized mean total fluctuating kinetic energy k along the 
plane of symmetry at Y = 0. 

 
WF coarse grid WF fine grid 

TL coarse grid TL fine grid 

Figure 5.9: Normalized mean total fluctuating kinetic energy along the x-axis at 
plane of symmetry (Y = 0). 

Several of the above findings can be approved here. The RSM and the SST k-ω 
model show the best agreement with the laboratory data while the results for the 
latter are improved by a refinement of the boundary layer.  By contrast, the RNG k-ε 
model works best with a coarse boundary layer grid and the use of wall functions, as 
can be seen by the almost identical results compared to the RSM. All models show 
an increased amount of fluctuating kinetic energy on the fine grids due to the 
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reduced numerical dissipation. The retarded separation on the backside of the 
cylinder is reflected by the peak values which are always closer to the cylinder than 
the experimental data. 

The overestimation of the recirculation length with the standard and realizable 
k-ε model was attributed above to an underestimation of the total dissipation which 
is approved by the significantly lower total fluctuating kinetic energy. On the other 
hand, the standard k-ω model showed a too short recirculation length and higher 
dissipation in the near wake leading to a reduced mean streamwise velocity 
compared to the other models. Also this argumentation is manifested by the 
fluctuating kinetic energy which is always significantly overestimated, especially in 
the near wake. 

Although no significantly new insights might be expected from the lateral extent of 
the total fluctuating kinetic energy, it might be interesting to look at the overall 
distribution. This is shown as contour plots in Figure 5.10, where the top panel 
represents the laboratory reference of Cantwell & Coles (1983) and the panels below 
correspond to the presumably best numerical results for each turbulence model. The 
cross-stream extent is confined for all simulations, particularly very close to the 
cylinder, which nicely shows the impact of the point of separation. However, despite 
this fact the agreement of the experimental data with the results of the RNG k-ε 
model, the SST k-ω model and the RSM is very satisfactory. Qualitatively also the 
standard and realizable k-ε model and the standard k-ω model agree with the 
laboratory data as far as they at least show the right distribution. Anyway, the 
absolute values are clearly missed which above was assumed to be caused by an 
over- and underproduction of turbulent kinetic energy, respectively. 

This assumption shall be confirmed by Figure 5.11 where the distribution of 
turbulent (left row) and periodic (right row) fluctuating kinetic energy is shown for 
the standard k-ε model (in representation of the realizable k-ε model), the standard 
k-ω model and the SST k-ω model as a reference. Indeed, in case of the standard k-ε 
model the severe overproduction of kt in front of the cylinder is carried around the 
cylinder to yield much higher values than for the SST k-ω model. 
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Cantwell & Coles (1983) 

 
k-ε standard (WF fine grid) 

 

k-ω standard (TL coarse grid) 

 
k-ε RNG (WF coarse grid) k-ω SST (TL coarse grid) 

 
k-ε realizable (WF fine grid) 

 

RSM (TL coarse grid) 

Figure 5.10: Comparison of normalized mean total fluctuating kinetic energy k. 
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In consequence, the periodic motion is significantly damped which results in an 
underestimation of the total amount of fluctuating kinetic energy. By contrast, the 
turbulent kinetic energy for the standard k-ω model is significantly lower such that 
the periodic kinetic energy is increased and the sum of both is overestimated. 

 
turbulent kinetic energy kt 

 
k-ε standard 

 

periodic kinetic energy kp 
 

k-ε standard 

k-ω SST k-ω SST 

 
k-ω standard 

 

k-ω standard 

Figure 5.11: Comparison of turbulent (left) and periodic (right) fluctuating kinetic 
energy for three selected turbulence models. 
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It should be noted that Kato & Launder (1993) introduced a modification of the 
production term in the transport equation for turbulent kinetic energy to remedy the 
unrealistic overproduction in the stagnation point. This modification could be 
successfully applied by Bosch (1995) for the flow around a square cylinder and 
circular cylinder at lower Reynolds numbers. For the present analysis, however, only 
the realizable k-ε model with the two-layer near wall treatment showed major 
improvement if the production term was modified. 

5.3.4 Concluding remarks 

The study of numerical simulations from the literature showed that the best results 
for the flow around a circular cylinder are achieved with LES. However, this method 
is computationally to expensive if higher Reynolds numbers are considered and the 
present analysis therefore focused on turbulence models for the RANS equations. 
The standard and realizable k-ε model as well as the standard k-ω model suffer from 
a wrong production of turbulent kinetic energy which leads to significant deviations 
in the fluctuating and mean flow field. Thus, these models must be identified to be 
less suited for the flow around bluff bodies. Numerical results with the RSM, the 
RNG k-ε model and the SST k-ω model, on the other hand, agree fairly well with the 
laboratory reference data if the boundary layer at the cylinder is adequately treated. 

However, for all models the angle of separation is significantly overestimated and 
the flow detaches partly far on the backside of the cylinder. In consequence, the 
mean drag force is reduced, the wake in cross-stream direction is confined and the 
mean streamwise velocity is higher compared to the experimental data. This might 
be attributed to the nature of the turbulence models which all assume a completely 
turbulent flow field while for the Reynolds number considered here, the boundary 
layer at the cylinder is actually laminar and transition to turbulence takes place in the 
free shear layers shortly after separation. Hence, it can be supposed that those 
models that already performed fairly well in the present case will even work better at 
higher Reynolds numbers when the boundary layer becomes turbulent and the angle 
of separation therefore moves to the back of the cylinder. 
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6 Density stratification and entrainment 

In the preceding validation of the numerical model for the flow around a circular 
cylinder density was assumed to be constant throughout the fluid. However, the goal 
of this thesis is to investigate the influence of such cylinders on the evolution of a 
density current which is driven by differences in the density field. Hence, it is useful 
now to have a look at undisturbed density stratified fluids and introduce the main 
issues and parameters concerned with stratification and entrainment. At the end of 
this chapter a first validation of the numerical model will demonstrate its ability for 
the simulation of stratified flows. 

6.1 Definitions 

6.1.1 Gravity 

Up to now gravity has been considered as a general external force per unit mass 
given by gi in the momentum balance ((2.33)(b) or (3.38)(b)). In context with the 
flow around a cylinder discussed in the preceding chapter it is even negligible as it 
does not alter the solution of the problem. However, if density is not constant 
throughout the flow field the gravity term becomes very important as shown in 
chapter 2.3 where the Boussinesq approximation was introduced. Hence, for the 
further discussion, now it is convenient to define a coordinate system and the 
corresponding gravity vector gi. 

The gravitational acceleration on the earth can be approximated to be g ≈ 9.81 m/s² 
(cf. chapter 2.4). Here the definition of the coordinate system which was introduced 
in context with the Coriolis forces is adopted. With the x- and y-axis spanning a 
horizontal plane and the z-axis pointing vertically upwards the external force vector 
is defined as  
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Stratification is defined as the variation of the density field in the direction of the 
external force field. As shortly mentioned in context with the buoyancy production 
term (3.52) in chapter 3.4, a favorable (stable) stratification exists if density 
decreases upwards. Then the heavier fluid is below the lighter fluid and the driving 
force in the momentum equation (2.8) ( 0 gρ ρ−Δ ) is directed to the bottom such 
that the situation remains stable. In the opposite case, for example in a thermal 
convection problem, the driving force will put the lighter (warmer) fluid upwards 
and increase the level of turbulence and mixing to return to a stable state. The issues 
of stability and mixing will be discussed next. 

6.1.2 Gradient Richardson number 

In chapter 3 the shear number (3.62) had been introduced as the ratio of the turbulent 
timescale (3.54) and the timescale of the mean flow field defined by the scalar strain 
rate (3.61) which can be interpreted as a shear frequency. Analogously the buoyancy 
number (3.129) was presented as the ratio of the turbulent timescale and a time scale 
characterizing the mean density field. This time scale is given by the inverse 
buoyancy frequency (or Brunt-Väisälä frequency) N given by 
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which is only a real number for a favorable density gradient. 

The ratio of the buoyancy time scale and the shear time scale defines the gradient 
Richardson number which is given by 
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where in the middle term only the relevant components of the shear frequency S 
have been regarded. This simplification is based on the assumption that vertical 
velocities are very much smaller than horizontal velocities and that only vertical 
gradients are of relevance (cf. the boundary layer approximation used for the ASM 
in chapter 3.7). In relatively shallow waters, as in the coastal regions, this 
approximation is indeed justified and therefore also referred to as ‘shallow water 
approximation’. 

The gradient Richardson number is a measure for the stability of stratification. It is 
obvious that Rig < 0 represents an unstable situation as this case automatically 
implies an unfavorable density gradient (density decreasing with depth). Hence, only 
a positive gradient Richardson number is associated with a stabilizing effect when 
heavier fluid is below lighter fluid. However, it might not be expected that a positive 
gradient Richardson number implies unconditional stability. If the velocity gradient 
is large enough and the density gradient is small (i.e. small Rig) it is likely that the 
stabilizing density stratification will be broken up by the kinetic energy in the shear 
layer. With increasing Richardson number the stabilizing effect of stratification 
becomes more and more important and Howard (1961) and Miles (1961) showed by 
linear stability analysis that a necessary criterion for unconditional stability is 
Rig > 0.25.  

This can be visualized by a simple example (Malcherek (2001)). Assuming linear 
distributions for velocity and density and taking a heavy parcel of fluid at z with u(z) 
and ρ(z) below a light parcel of fluid at z + Δz with u(z + Δz) and ρ(z + Δz), the gain 
of potential energy and loss of kinetic energy when both parcels are exchanged is 
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where it has been assumed that the variation of density is negligible for the kinetic 
energy. Noting that the gain in potential energy cannot exceed the loss of kinetic 
energy  
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and recalling the definition of the gradient Richardson number (6.3) the necessary 
condition for the fluid to be mixed is Rig < 0.25. 

As the theory is based on linear assumptions in reality mixing can actually occur at 
still higher Richardson numbers as e.g. observed in laboratory experiments by 
Strang & Fernando (2001) or field measurements by Moum et al. (1989). However, 
the linear stability analysis at least provides a good estimation for the critical 
Richardson number and Rig > 0.25 is a widely accepted criterion for mixing to be 
negligible. 

6.1.3 Flux Richardson number 

While the gradient Richardson number above is defined by the ratio of mean density 
and velocity scales the flux Richardson number is defined by the relation of the 
corresponding turbulent quantities, namely buoyant production (3.52) and shear 
production (3.60). With the ‘shallow water approximation’ the flux Richardson 
number is given by  
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where the turbulent viscosity assumption has been applied to relate the flux 
Richardson number to the gradient Richardson number by the turbulent Prandtl 
number which will be discussed later. It should be noted that unlike the gradient 
Richardson number the flux Richardson number is also defined for shear-free flows 
or stagnant stratified fluids. In these cases turbulence is not produced by shear in the 
mean flow field as assumed in (6.6) but by other sources like breaking waves or ship 
impellers. However, her only sheared flows are regarded and Rif  is defined by (6.6). 
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The flux Richardson number stems from the balance of turbulent kinetic energy 
(3.48) and gives the amount of the produced kinetic energy that is used to mix the 
fluid and gain its potential energy. In a steady state situation turbulence is in 
equilibrium, the left hand side of (3.48) vanishes and the balance is solely governed 
by the production and dissipation terms on the right hand side (e.g. Osborn (1980)). 
Thus, the remaining amount of the produced turbulent kinetic energy which is not 
used to increase the potential energy is dissipated to heat by ε. Therefore, the flux 
Richardson number is limited to a certain value less than 1 and in fact, as pointed out 
by Stewart (1959), should be considerably less than 1.  

It is natural to expect Rif to depend on the stability of stratification and in turn on the 
gradient Richardson number (proportionality given by σt). In case of a neutral fluid 
(no stratification) Rif = 0 by definition, as the nominator in (6.6) vanishes. When the 
stabilizing effect of stratification increases turbulence will be more and more 
suppressed such that the denominator in (6.6) decreases. On the other hand, a certain 
amount of the remaining produced turbulent kinetic will be used for the buoyancy 
production resulting in a rise of Rif. However, as the maximum value of Rif is limited 
for the reasons above, it can be supposed that Rif increases most for weak 
stratification and then asymptotically approaches a maximum value at strong 
stratification until it becomes indefinite when turbulence and mixing are totally 
suppressed by stratification. 

These assumptions are supported by laboratory experiments, numerical simulations 
and theoretical models as shown in Figure 6.1. The experimental data are taken from 
Rohr (1985), DNS simulations from Holt et al. (1992) and LES simulations from 
Schumann & Gerz (1995). The curves represent theoretical predictions from 
Schumann & Gerz (1995) and the Version A of the ASM of Canuto et al. (2001) (cf. 
chapters 3.6 and 3.7). The results of the numerical simulations are in fair agreement 
with the laboratory data except for some outliers around Rig ≈ 0.2 which cannot be 
physically interpreted and should therefore be ignored. It should be stressed that the 
theoretical curves are no curve fittings to the data but are based on considerations of 
the relevant physical processes. 
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Figure 6.1: Flux Richardson number Rif as function of 
gradient Richardson number Rig.     

Although both models are derived on different backgrounds they provide quite 
similar results with a maximum flux Richardson number of about Rif ≈ 0.25 (for the 
model of Schumann & Gerz (1995) this is actually a tunable parameter, cf. (6.8) in 
the next section), which is supported by the laboratory and model data shown here. 
However, the maximum value of Rif is intensively discussed in the literature. Ivey & 
Imberger (1991), based on different laboratory experiments with air and water, have 
shown that Rif depends on the molecular Prandtl number Pr and varies between 
0 and 0.2 for fluids with Pr > 1 (temperature in water: Pr = 7, salt in water Pr = 700) 
and between 0 and 0.15 for fluids with Pr < 1 (temperature in air Pr = 0.7). This 
dependence on the molecular Prandtl number could be confirmed by DNS results of 
Cortesi et al. (1999), or Shih et al. (2005) where the latter have shown slightly 
higher values (Rif,max ≈ 0.25) and less sensibility to the Prandtl number. 

A very popular model in oceanography to estimate the turbulent diffusion from 
measurements of density and turbulent dissipation rate (see e.g. chapter 7.2.4) was 
proposed by Osborn (1980). The maximum flux Richardson number proposed by 
Osborn (1980) is Rif  = 1/6 ≈ 0.167 and therefore less than the values suggested 
above. Nevertheless, the model has been proven to work reasonably well for many 
field measurements which might be argued by patchy turbulence which generally 
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yields lower mixing rates (Arneborg (2002)). In laboratory experiments as well as 
numerical simulations and theoretical models turbulence is always assumed to be 
more or less homogenous while in nature patches of turbulence frequently occur and 
explain the lower flux Richardson numbers and the success of the Osborn model. 

Anyway, the maximum flux Richardson number usually assumed in the 
oceanography community is 0.17 < Rif < 0.2 and represents a reasonable range 
concerning the overall experience from field and laboratory measurements as well as 
numerical simulations and theoretical models.  

6.1.4 Turbulent Prandtl number 

The turbulent Prandtl number σt had been introduced in chapter 3.4.1 and is a central 
part of the turbulent diffusivity assumption as it relates the turbulent viscosity tν to 
the turbulent diffusivity tν ′ . The former is determined by the underlying more or less 
elaborate turbulence model while all the physics for turbulent diffusion are 
contained in σt. As the preceding discussion about the flux Richardson number has 
shown the turbulent Prandtl number cannot be constant in a stratified fluid as 
otherwise Rif would not asymptotically reach its maximum value. Hence, the 
turbulent Prandtl number must also be a function of the gradient Richardson number 
and in fact, the theoretical curves for Rif in Figure 6.1 are based on models for the 
turbulent Prandtl number rather than the flux Richardson number.  

As shown in chapter 3.7 for an ASM the turbulent Prandtl number is not only a 
single function of the gradient Richardson number but more generally depends on 
the ratio of the turbulent buoyancy and shear numbers αN and αM, respectively. By 
definition the gradient Richardson number is given by g N MRi α α= and there are 
infinite possible combinations yielding the same gradient Richardson number but 
different turbulent Prandtl numbers. To compare the turbulent Prandtl numbers from 
an ASM to those predicted by other models that assume a dependence on Rig only a 
further constraint is needed. This can be achieved by the assumption of stationary 
turbulence where production and dissipation are in balance (P + G − ε = 0). Given 
the definitions of the single terms this can be transformed to 1M Nc cμ μα α′+ =  and 
fixes the relation between the turbulent shear and buoyancy numbers. 
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Galperin et al. (1988) showed by scale analysis that it is no model inconsistency to 
apply the equilibrium turbulence assumption to the stability functions unless the 
fully dynamic equation for the turbulent kinetic energy is retained. This is supported 
by Burchard & Bolding (2001) comparing the full and the quasi-equilibrium 
versions of four different ASM. 

One of the first simple models for the turbulent Prandtl number was proposed by 
Munk & Anderson (1948) based on a curve fit through available data. The 
functional relation between σt and Rig is given by 
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This model has been applied in oceanography for a long time due to the lack of 
alternatives. Schumann & Gerz (1995) were maybe the first to analytically derive a 
model equation for σt that also fitted reasonably well to experimental and numerical 
data as shown in Figure 6.1 in context with the flux Richardson number. The model 
of Schumann & Gerz (1995) is given by 
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where σt0 and Rif∞ are free parameters representing the neutral turbulent Prandtl 
number at zero stratification and the maximum flux Richardson number that was 
already discussed above. As with the maximum flux Richardson number there is 
slight controversy about the neutral turbulent Prandtl number. Schumann & Gerz 
(1995) derived a value of σt0 = 0.72 for salt in water based on the measurements of 
Rohr (1985) and σt0 = 0.98 for temperature in air based on wind tunnel data. Both 
are in the reasonable range suggested by many measurements and theoretical 
considerations as discussed by Schumann & Gerz (1995). The analytically derived 
quasi-equilibrium version of the ASM of Canuto et al. (2001), e.g. yields σt0 = 0.86. 
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Figure 6.2 shows the turbulent Prandtl number against the gradient Richardson 
number for the models of Munk & Anderson (1948), Schumann & Gerz (1995) and 
the Version A of the ASM of Canuto et al. (2001) compared to laboratory and 
numerical data (cf. Figure 6.1). 

 

Figure 6.2: Prandtl number σt as function of gradient 
Richardson number Rig.     

Although there is significant scatter in the reference data (especially for the 
measurements of Rohr (1985)) the increase of σt with increasing Rig is clearly 
observable. All theoretical models reproduce this increase whereas it seems to be 
slightly underestimated by the Munk & Anderson (1948) model. Anyway, for small 
Richardson number Rig < 0.25 all theoretical curves are within the data and the weak 
increase in that region even suggests the use of a constant turbulent Prandtl number 
as a reasonable approximation. This issue will be analyzed at the end of this chapter. 

6.1.5 Stationary Richardson number 

The stationary Richardson Rist number was first introduced by Holt et al. (1992) and 
describes the state for which turbulent kinetic energy is constant in time. Then the 
turbulent flow field is homogenous and the left hand side of the balance equation 
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(3.48) vanishes. Hence, production, buoyancy flux and dissipation must be in 
balance such that 

2 2 0t
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t

dk P G S N
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νε ν ε
σ

= + − = + − = , (6.9)

where the third expression made use of the turbulent viscosity/diffusivity 
assumption. 

A common practice in DNS and LES simulations of stratified homogenous turbulent 
shear flows is to fix the mean shear and density stratification (Rig = const.) and 
analyze the evolution of the turbulent flow field. The stationary Richardson number 
can then be found by varying the gradient Richardson number until the equilibrium 
for turbulent kinetic energy is achieved. Holt et al. (1992) found that the stationary 
Richardson number depends on the turbulence intensity given by the turbulent 
Reynolds number 2λ λ ν=Re k , where λ is the Taylor micro scale. With increasing 
Reynolds number the stationary Richardson number also increases reaching a 
maximum value of Rist = 0.25 at high Reynolds numbers. These findings are 
corroborated by later DNS data of Shih et al. (2000) who showed that for low 
Reynolds numbers there is also a dependence on shear rate as proposed by 
Jakobitz et al. (1997). 

As theoretically shown by Burchard & Baumert (1995) and supported by their 
numerical results, turbulence will exponentially grow if Rig < Rist and for Rig > Rist it 
will decay to zero. However, the idealized conditions of the numerical simulations 
only partly reflect reality as growing turbulence will actually increase mixing and so 
the gradient Richardson number. Hence, it can be anticipated that in shear layers far 
away from boundaries the stationary Richardson number will automatically be 
approached if Rig < Rist initially. Interestingly, the upper limit for the stationary 
Richardson number as shown above is exactly the value proposed by Miles (1961) 
as a threshold for unconditionally stable stratification. However, as noted by 
Shih et al. (2000) this may be just a coincidence. 

It should be expected from a turbulence model to reproduce the stationary 
Richardson number as otherwise mixing would be over- or underestimated. In case 
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of the two-equation models considered here this requirement is closely related to the 
buoyant production term in the second equation (for ε or ω). In a general form 
(cf. Umlauf & Burchard (2003)) this equation for stationary turbulence reads 
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where ψ either stands for ε or ω and the third expression again made use of the 
turbulent viscosity/diffusivity assumption. It should be noted that (6.10) actually 
only applies to the standard k-ε model and the standard and SST k-ω models. In the 
realizable k-ε model the formulation for the production term is different and in the 
RNG k-ε model there is an additional term that is not recognized in (6.10). However, 
as mentioned in chapter 3.5 for homogenous turbulence both converge to the 
standard k-ε model which therefore will serve as a proxy for the class of k-ε models 
in the following discussion. 

Combining (6.9) and (6.10) yields an expression for the stationary Richardson 
number in terms of the model constants in the ψ equation and the turbulent Prandtl 
number: 
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As the model constants cψ1 and cψ2 are already assigned by the turbulence model Rist 
is only a function of cψ3 and the model for the turbulent Prandtl number. It should be 
noted that the stationary Richardson number considered here corresponds to the 
gradient Richardson number and it is apparent from (6.11) that the efficiency of 
mixing as given by the flux Richardson number will only be a function of cψ3. 

Figure 6.3 shows the stationary Richardson number as function of cψ3 for a constant 
turbulent Prandtl number σt = 1.0 and the three models discussed in 6.1.4, above. 
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     σt = 1.0              Munk & Anderson (1948) 

        Schumann & Gerz (1995)                    Canuto et al. (2001) vers. A 

Figure 6.3: Stationary Richardson number as function of buoyant production 
constant cψ3 for different models of turbulent Prandtl number. 

Interestingly, with a constant turbulent Prandtl number σt = 1.0 the stationary 
Richardson number for the standard k-ε model exactly matches the alleged target-
value Rist = 0.25. This might explain the idea of Rodi (1987) who suggested to 
neglect the buoyancy term in the ε-equation (cε3 = 0) in case of stable stratification. 
However, if σt = 1.0 is used with a k-ω model instead, the stationary Richardson 
number is significantly higher (std. k-ω: Rist = 0.35, SST k-ω: Rist = 0.52) and 
presumably overestimated. In case of the models of Schumann & Gerz (1995) and 
Canuto et al. (2001) a stationary solution is not even possible if cψ3 ≥ 0. This 
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underlines the necessity to include the buoyancy term in the equation for turbulence 
length scale and points out its effect on the turbulent and specific dissipation rates, 
namely a reduction (cψ3 < 0) in case of stable stratification. 

Although a definite value for the stationary Richardson number cannot be given, the 
maximum value of Rist = 0.25 suggested by the DNS data as shown above seems to 
be a reasonable approach that is further supported by the wind entrainment 
experiment of Kato & Phillips (1969) which will be discussed at the end of this 
chapter. The specific values of cψ3 corresponding Rist = 0.25 for the different 
turbulence and turbulent Prandtl number models are given in Table 6.1. 

 

turbulence model σt = 1.0 Munk & 
Anderson 

Schumann & 
Gerz Canuto A 

std. k-ε 0.00 -0.63 -0.34 -0.63 

std. k-ω -0.32 -0.69 -0.52 -0.69 

SST k-ω -1.00 -1.63 -1.34 -1.63 

Table 6.1: Model constant cψ3 for Rist = 0.25. 

Surprisingly, the constants for the empirical model of Munk & Anderson (1948) and 
the theoretical model of Canuto et al. (2001) for this specific Richardson number are 
identical, as the actually quite different functions for the turbulent Prandtl number 
coincidently intersect at Rig = 0.25 (cf. chapter 6.1.4, Figure 6.2). It is further 
interesting to note, that the model constants for the standard k-ε model and the 
SST k-ω model are related by cε3 = cω3 + 1, as pointed out by Umlauf et al. (2003). 
This, however, is no coincidence but stems from the model constants cω1 and cω2 
that result from the transformation of the ε-equation into the ω-equation to arrive at 
the SST k-ω model (see chapter 3.5.2). 

Before a first validation of the present numerical model for the simulation of mixing 
and entrainment in stratified fluids is made in section 6.3 it is useful first to shed 
some light on the nature of mixing and the idea behind the entrainment assumption. 
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6.2 Entrainment and mixing 

In a laminar flow or a stagnant fluid at the limit mixing between regions of different 
properties (momentum, salinity, temperature, etc.) is caused by molecular motions 
parameterized by the molecular viscosity and diffusivities. In turbulent flows this 
approach can be adopted (see chapter 3.4.1) and mixing can be modeled with the 
assumption of turbulent viscosity and diffusivities. Even if this rather simple 
parameterization has the ability at least to work well for the mixing of momentum as 
could be demonstrated by the cylinder flow in the preceding chapter it does not tell 
anything about the actual mechanism of mixing. Hence, before the entrainment 
assumption will be discussed it is useful first to look at mechanisms of mixing. 

For this purpose the flow is assumed to be turbulent and stratification is disregarded 
at first such that density is constant throughout and the flow is governed by the mass 
and momentum balance only. A very nice and classical example for entrainment and 
mixing in such a neutral situation is the turbulent jet which is ejected into a stagnant 
body of fluid as shown in Figure 6.4. 

 

Figure 6.4: Snapshot from a laboratory experiment for a round vertical jet. 
Image source: http://www.amath.unc.edu/lab/  

http://www.amath.unc.edu/lab/�
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It is clearly seen that the initial size of the jet at the bottom corresponding to the 
nozzle diameter constantly grows with increasing distance from the point of 
injection. This spreading is caused by mixing of the turbulent core with the non-
turbulent ambient fluid which is ‘entrained’ into the jet by large scale vortices at the 
interface induced by the shear between the jet and the stagnant surrounding. The 
large scale coherent structures denoted as Kelvin-Helmholtz waves are a distinctive 
feature of unstratified turbulent shear flows and can be detected to some extent from 
the snapshot in Figure 6.4. 

It is believed, that mixing in an unstratified shear layer can be attributed to the 
growth of Kelvin-Helmholtz waves and the engulfing of ambient fluid which is 
finally incorporated into the turbulent core. This process has been extensively 
investigated in the past using both laboratory experiments and numerical simulations. 
One of the first applications of the latter was done by Corcos & Sherman (1984) 
who provided the nice representation of the engulfing process given in Figure 6.5. 

 

Figure 6.5: Visual record of ‘engulfing’ in an unstratified shear flow showing 
the successive positions of the interface at dimensionless times 
t = 1.0, 2.0, 2.5, with fluid on one side shaded and arrows of 
arbitrary length representing segments of the streamlines (adopted 
from Turner (1986)). 

Although the instantaneous flow field in the jet is highly complex and chaotic as 
seen from Figure 6.4 the mean profiles averaged over some eddy turn-over times are 
steady, symmetric and self-similar after some distance from the injection. The self-
similarity solution based on dimensional analysis (cf. e.g. Turner (1973) or 
Fisher et al. (1979)) can be used to parameterize the engulfing and entrainment of 
ambient fluid into the jet by a fictional entrainment velocity wE. For a pure jet 
momentum can be assumed to be conserved while the mass flux (respectively 
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volume flux, as density is constant throughout) constantly increases with increasing 
distance from the injection point due to the entrainment of surrounding fluid: 
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where q is the mass (volume) flux and u and A are the horizontal velocity profile and 
area of the jet at vertical distance z from the point of injection. 

The entrainment velocity is a dimensional quantity and as such it depends on the 
distance from the injection and furthermore it strongly varies with the scales of the 
flow. To obtain a more general expression for the entrainment it is useful to scale the 
entrainment velocity by an appropriate velocity of the mean flow field which for 
example could either be given by the maximum or the average velocity of the jet at 
distance z from the injection. In the latter case the more general entrainment rate E is 
defined by 
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where Um is the mean velocity of the jet at distance z from the nozzle. It turns out 
that the entrainment rate is a universal constant which for the jet can be estimated 
from the similarity profiles and experimentally determined spreading rates (see e.g. 
Fischer et al. (1979)) to be E ≈ 0.054. The spreading rate for jets is also a constant as 
could be expected from the snapshot given in Figure 6.4. It is directly related to the 
entrainment rate by db/dz = 2E ≈ 0.108 where b is the half-width of a planar jet or 
the radius of a round jet. 

A more detailed discussion of the entrainment equations can be found in the review 
by Turner (1986) where a similar procedure is applied to vertical plumes. Unlike the 
jet, a plume is not driven by initial momentum but rather by the density difference 
between the light fluid making up the plume and the heavier ambient fluid. Hence, 
for a vertical plume not momentum but buoyancy is the conserved quantity and the 
resulting equations are slightly different. Considering small density difference such 
that the Boussinesq approximation can be applied (cf. chapter 2.3) the entrainment 
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rate for a plume can be estimated to be E ≈ 0.083 which is significantly larger than 
the value suggested for the jet above. However, the spreading rate given by 
db/dz = 6/5E ≈ 0.100 turns out to be interestingly of the same size although this 
value is based on much less precise data (Turner (1986)) as vertical plumes tend to 
oscillate and the meandering effects complicate a proper evaluation of the 
measurements (Pedersen (1986)). 

Although there is a density difference in the vertical plume this kind of flow can still 
be regarded as unstratified because the density gradient is more or less perpendicular 
to the gravity force and stratification is unimportant. However, if the flow is 
bounded by an inclined wall such as in a light roof or dense bottom current 
stratification will have a damping effect on mixing and entrainment and the vertical 
plume can be regarded as the upper limit for these kinds of flow. The effect of 
stratification can be generally regarded in terms of a bulk Richardson number 
representative for the complete flow field, unlike the gradient Richardson given by 
(6.3) which is a local quantity. If the differential expressions in (6.3) are replaced by 
differences the bulk Richardson number can be written as 
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where Δρ and ΔU are typical density and velocity differences for the specific kind of 
flow and Δz is a typical length scale which is not necessarily the distance over which 
the density or velocity difference occurs. Assuming for instance a density current of 
depth D with mean density ρc and speed U in a stagnant ambient fluid of density ρ0 
the corresponding differences are usually set to Δρ = ρc - ρ0, ΔU = U and Δz = D, 
where the current depth is most often used for the length scale rather than the 
thickness of the interface between the current and the surrounding fluid (see also 
chapter 7.1.5). Another typical example for stratified shear flow is the wind induced 
mixing of an initially stratified stagnant fluid which will be used in the next section 
as a first test case for the validation of the present numerical model. In this case Δρ 
and Δz make up the initial (linear) stratification and ΔU is set to the friction velocity 
uτ caused by the wind blowing over the surface. 
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As stated above stratification will generally dampen mixing and entrainment. This 
can be explained by the fact that the energy needed to establish the engulfing 
Kelvin-Helmholtz waves by lifting up the heavier fluid in a dense bottom current or 
pushing down the lighter fluid in a light roof current increases with increasing 
density difference. The amount of available (kinetic) energy is given by the velocity 
difference and thus for sufficiently small bulk Richardson numbers (small density 
difference, large velocity difference) stratified shear flows are also governed by 
Kelvin-Helmholtz instabilities and mixing and entrainment just occur as sketched 
above (Rib = 0 for jets and plumes). 

As the Richardson number increases, however, the growth of the Kelvin-Helmholtz 
waves will be inhibited by the restoring buoyancy forces and the basic entrainment 
assumption of engulfing ambient fluid seems to break down. From one of the first 
experiments on entrainment in stratified shear flows by Ellison & Turner (1959) it 
could be indeed concluded that there is no entrainment beyond Rib > 0.8. Based on 
their data Turner (1986) gave the following entrainment law for stratified shear 
flows depending on the bulk Richardson number: 
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It is seen that for small Richardson numbers (Rib → 0) the entrainment rate for a 
vertical plume given above is recovered and with increasing Richardson number 
entrainment gets smaller and smaller. At the limit for Rib = 0.8 the entrainment rate 
vanishes and for larger Richardson numbers this entrainment law looses validity. 

However, in later experiments it could be shown that also for larger Richardson 
numbers significant entrainment may be present attributed to the occurrence of 
Holmboe waves (Holmboe (1962)) which are symmetric instabilities unlike the 
Kelvin-Helmholtz waves described above. A very nice visualization of both types of 
instabilities is shown in Figure 6.6 from which the roll-up and engulfing effect of 
Kelvin-Helmholtz billows is clearly identifiable. The Holmboe waves in the lower 
panel do not roll up and the whole entrainment process can be expected to much less 
violent. 
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Kelvin-Helmholtz waves 

 
Holmboe waves 

 
Figure 6.6: Visualization of Kelvin-Helmholtz waves and Holmboe waves in a 

laboratory experiment. Images are taken from Fernando (1991). 

Pedersen (1980) conjectured that entrainment by Holmboe waves is associated with 
the ejection of small wisps of fluid from the cusp of the wave. The breaking of 
Holmboe waves actually occurs on both sides of the interface but due to lack of 
turbulence in the ambient fluid the entrained fluid is not further mixed there but will 
be forced back to the interface by buoyancy. Within the turbulent layer the entrained 
fluid is carried away from the interface and mixed with the surroundings causing the 
yet small but noticeable entrainment rates even at larger bulk Richardson numbers 
beyond Rib = 0.8. 

It is not the goal of the present chapter to discuss all the aspects of mixing and 
entrainment in stratified fluids which are in fact not completely understood even by 
now (Strang & Fernando (2001)). Much more it was intended to explain the basic 
mechanisms of mixing and to introduce the idea behind the entrainment assumption. 
More details and a more thorough discussion about this topic can be found for 
example in the reviews of Turner (1986) and Fernando (1991) and the references 
therein. The present section shall be finished with a short presentation of the state of 
knowledge about entrainment and the entrainment laws reported in the literature. 
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Fernando (1991) provided a compilation of various measurements of entrainment in 
stratified shear flows all aiming to provide a more or less general entrainment law 
depending on the bulk Richardson number. As shown above in (6.15) the law given 
by Turner (1986) based on the data by Ellison & Turner (1959) breaks down for 
large Richardson numbers (Rib = 0.8). A more general expression which is defined 
for all (positive) Richardson number and was therefore used in almost all succeeding 
investigations is given by 

n
bE mRi−= , (6.16)

where m and n are parameters to fit the function to the specific data. However, as 
well as there is some spread in the individual data the parameters suggested in the 
literature vary significantly. While the values for n are found to be still in quite 
narrow range between 0.5 and 2 the proposed values for m differ by several orders 
of magnitude ranging between 5·10-4 < m < 160 (cf. Table 1 in Fernando (1991)).  

Figure 6.7 (adopted from Figure 15 in Fernando (1991)) shows a compilation of data 
from many different laboratory experiments and field measurements represented by 
the symbols compared to some selected entrainment laws displayed by the solid 
lines. The results from the recent experiments of Cenedese et al. (2004) and the field 
measurements of Baringer & Price (1997) have been added in order to show that 
they fall right within the scatter of the other data and therefore provide a reasonable 
reference for the simulation of natural density currents in the next chapter.  

It can be seen that the law (6.15) based on the data of Ellison & Turner (1959) very 
nicely fits the data points from this specific experiment but obviously seizes to be 
valid for larger Richardson numbers, say Rib > 0.5, when the function starts to 
rapidly approach zero. Due to the exponential form given by (6.16) all other 
entrainment laws appear as straight lines in the logarithmic plot with the slope given 
by the exponent n. Especially noteworthy is the law given by Christodoulou (1986) 
who proposed to divide the entrainment rate versus Richardson number plot into 
three distinct regimes. For low Richardson numbers, say Rib < 0.1, he suggested 
n = 0.5, for intermediate Richardson numbers, say 0.1 < Rib < 10, n = 1.0 and for 
high Richardson numbers n = 1.5. This is consistent with the data and the slope in 
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the intermediate regime (n = 1) was also assumed in many other entrainment laws 
(e.g. Kato & Phillips (1969) or Halpern (1974)). The law of Stigebrandt (1987) has 
been derived for subcritical density currents (Rib > 1) and assumes n = 1 throughout 
which seems to fit the data also for very high Richardson numbers. 

Figure 6.7: Entrainment rate versus bulk Richardson number. Comparison of 
different entrainment laws from the literature with laboratory and 
field measurements. Extension of Figure 15 in Fernando (1991). 

The major mechanism of mixing and entrainment discussed above might be a 
reasonable assumption, but the spread in the data shown in Figure 6.7 suggests that 
entrainment might be governed by several other processes, inhibiting the definition 
of a generally valid entrainment law. However, the power law given by (6.16) seems 
to be a good approximation which will be further discussed in chapter 7.1.5 where 
an entrainment law for density currents under the influence of Coriolis forces is 
theoretically derived. Before natural density currents are considered, however, the 
numerical model will at first be validated for the simulation of mixing in stratified 
fluids by the example of wind induced entrainment in a stratified body of water. 
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6.3 Wind induced entrainment 

If wind blows over the surface of a stagnant water body, it will induce a shear stress 
on the surface which will produce turbulence and bring the water body in motion. At 
the very beginning only the upper part of the water is affected, but as the wind keeps 
blowing it will be felt in deeper and deeper layers. If the water is stably stratified the 
heavier water will be entrained into the lighter water above it by the wind induced 
turbulence. The effect of mixing grows constantly downwards over time and under 
stationary wind conditions this will finally cause the complete mixing of the whole 
water body. 

Kato & Phillips (1969) carried out such a wind entrainment experiment in the 
laboratory that was later used by Price (1979) to derive an empirical formula for the 
temporal evolution of the mixed layer depth: 
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where Dm is the mixed layer depth, uτ is the constant friction velocity at the surface 
and N0 is the initial buoyancy frequency. 

This experiment has often been used as a reference for the validation of numerical 
models (e.g. Deleersnijder & Luyten (1994), Burchard & Bolding (2001), 
Umlauf & Burchard (2005)) and will also serve here as a first test case for the 
present numerical model.  

6.3.1 Model setup 

For the numerical simulation of wind induced entrainment it is sufficient to apply a 
one dimensional model that only resolves the vertical domain (cf. references above). 
In the present simulations, however, the complete three dimensional equations had 
to be solved due to the requirements of the numerical model wich has been used here 
(Fluent (2005)). Therefore the horizontal domain is made up of only one grid cell 
and periodic boundary conditions are applied on the lateral boundaries. At the top 
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boundary a constant shear stress is applied that will bring the water body in motion 
and induce the turbulence for mixing. The boundary condition at the bottom is more 
or less arbitrary as the simulations are stopped before the mixed layer will reach the 
bottom. In the present case a symmetry boundary condition has been chosen. 

The initial conditions conform to a stagnant constantly stratified water body with 
zero velocities and minimum turbulence (k = 1·10-7, ε = 1·10-9, ω = 0.1) for which 
the stratification is given by a constant buoyancy frequency N = 1·10-2. The shear 
stress at the surface is given by a constant friction velocity u* = 1·10-2. The total 
height of the domain is H = 40 m and, as found in preliminary model tests, the  
overall vertical grid resolution has been chosen to be Δz = 0.25 m which is refined in 
the upper 5 m to account for the steep gradients in the velocity and turbulence 
profiles. 

Figure 6.8 shows the vertical profiles of the numerical grid resolution and the initial 
conditions for density anomaly and velocity as full lines. To give an idea about the 
evolution of the mixed layer in time also profiles of density anomaly and velocity 
after 10, 20 and 30 hours of mixing are shown. 

 
        grid resolution          density anomaly            velocity 

Figure 6.8: Model setup for the experiment of Kato & Phillips (1969). 

It is obvious from these profiles that mixing is most intense at the beginning and 
exponentially decreases with time, as predicted by the formula (6.17) of Price (1979). 
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The velocity profiles indicate that the highest shear rate is in the upper and lower 
parts of the mixed layer. While the upper part has already been almost perfectly 
mixed (almost zero density gradients) the high shear below it contributes to the 
further erosion of the stable stratification. 

6.3.2 Results 

The main purpose of this test case is to approve the ability of the present numerical 
model to accurately account for the entrainment process in a stratified sheared fluid. 
Therefore all two-equation turbulence models that have been used in the preceding 
chapter for the unstratified flow around a circular cylinder have been reconsidered 
again. The RSM was not only neglected because of its significantly higher 
computational effort (that did not pay out for the flow around a cylinder) but much 
more because it showed such a strange behavior in the preliminary tests that for the 
present work no more effort has been put into this model.  

As shown by Umlauf et al. (2003) it can be expected that the standard k-ε model and 
the standard k-ω model will yield quite similar results for mixing in a stratified shear 
layer provided the model parameters are adjusted to the specific problem (see also 
Umlauf & Burchard (2003)). The governing parameter for the present case is the 
stationary Richardson number discussed above. Its influence and correct adjustment 
will therefore be analyzed first and it will be shown that also the results for 
variations of the turbulence models (realizable, RNG, SST) mostly depend on this 
parameter. In chapter 6.1.4 it was suggested that the dependence of the turbulent 
Prandtl number on stratification is of minor importance for small Richardson 
numbers Rig < 0.25. Hence, in the subsequent section it will be examined if this 
argument really holds for a practical numerical simulation. 

Partly the numerical results for the temporal evolution of the entrainment depth will 
be compared to the empirical formula (6.17) of Price (1979). According to other 
numerical studies, e.g. by Umlauf et al. (2003) or Burchard & Bolding (2001), in the 
numerical simulations the mixed layer depth is defined as the lower most point 
below the surface with a turbulent kinetic energy k > 1·10-5 m²/s². 
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Influence of stationary Richardson number 

As shown in chapter 6.1.5 the right prediction of the stationary Richardson number 
can be a crucial aspect for the numerical simulation of mixing in a homogenous 
shear layer and is closely related to the effect of buoyancy on turbulence dissipation 
and turbulence time scale, respectively. By the example of a constant turbulent 
Prandtl number, σt = 1.0, it could also be shown that the neglect of the buoyancy 
production term (cψ3 = 0) in the transport equation for ε and ω, respectively, exactly 
yields the alleged target value Rist = 0.25 for the k-ε models and quite significantly 
higher values for the k-ω models. 

For this case (σt = 1.0, cψ3 = 0) the numerically predicted temporal evolution of the 
mixed layer depth with all five turbulence models is compared to the empirical curve 
of Price (1979) in the left panel of Figure 6.9. The right panel shows the 
corresponding gradient Richardson number after 24 hours of mixing. 

 
      mixed layer depth           gradient Richardson number 

Figure 6.9: Temporal evolution of mixed layer depth and gradient Richardson 
number after 24 hours for the experiment of Kato & Phillips (1969). 
Different turbulence models with σt = 1.0 and cψ3 = 0. 

In the well mixed region below the surface (cf. Figure 6.8) the gradient Richardson 
number increases constantly until it remains almost constant for a while and finally 
increases to infinity in the still unaffected stagnant stratified layer at the bottom. The 
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region of constant Rig indicates homogenous turbulence and a balance of production 
and dissipation where the stationary Richardson number is expected. Indeed, for the 
k-ε models Rig ≈ 0.25, for the standard k-ω model Rig ≈ 0.35 and for the SST k-ω 
model Rig ≈ 0.52, just as predicted in chapter 6.1.5 (cf. Figure 6.3 and text below).  

The comparison of the temporal evolution of the entrainment depth in the left panel 
shows good agreement of the theoretical curve and the results with the k-ε models, 
approving the proposed value of the stationary Richardson number, Rist = 0.25. The 
higher values of Rist for the k-ω models leads to an overestimation of mixing and a 
faster increase of the mixed layer depth, which is physically reasonable, as discussed 
above, and in agreement with other simulations, e.g. Burchard & Bolding (2001). 
The stationary Richardson number for the RNG k-ε model is also slightly higher 
than 0.25, due to the additional term in the ε-equation that is not recognized in the 
derivation of cψ3. However, the resulting faster increase of the entrainment depth is 
not distinguishable from Figure 6.9 such that this slight deviation can be neglected. 

Obviously, for the proper simulation of the entrainment the stationary Richardson 
number must be around Rist = 0.25. With a constant turbulent Prandtl number 
σt = 1.0 this was already the case for the k-ε models and can be achieved for the 
k-ω models if the corresponding values of cω3 are adopted from Table 6.1. The 
results for the entrainment depth and gradient Richardson number are shown in 
Figure 6.10. 

As expected, for all turbulence models (except for the RNG k-ε model as discussed 
above) the profiles of the gradient Richardson number are almost identical with a 
stationary value of Rig = 0.25 in the homogenous turbulent layer. Although the 
Richardson numbers are quasi identical, the temporal evolution of the mixed layer 
depth is slightly slower for the k-ω models and therefore in perfect agreement with 
the empirical curve. It should be noted that a comparative analysis with the one-
dimensional General Ocean Turbulence Model GOTM (Umlauf et al. 2005), which 
was also used in the above cited papers of Umlauf and Burchard provided identical 
results for the standard k-ε and k-ω models. The alleged better results for the 
k-ω models, here, are therefore only hardly explained and presumably an effect of 
the numerical model. However, as the general effect of the stationary Richardson 
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number and the required adjustment of the model constant cψ3 are evident, this rather 
small discrepancy will be generously ignored. 

 
      mixed layer depth           gradient Richardson number 

Figure 6.10: Temporal evolution of mixed layer depth and gradient Richardson 
number after 24 hours for the experiment of Kato & Phillips (1969). 
Different turbulence models with σt = 1.0 and Rist = 0.25. 

Influence of turbulent Prandtl number 

As the previous discussion has shown, the mixing process in a stratified shear layer 
is mainly governed by the stationary Richardson number. If the model constant cψ3 is 
adequately adjusted the numerical simulations almost perfectly agree with the 
theoretical prediction, even with the crude assumption of a constant turbulent 
Prandtl number. However, as shown in chapter 6.1.4, the turbulent Prandtl number is 
actually a function of the gradient Richardson number which is empirically or 
theoretically estimated by different models. Even if the variation of σt is low for 
small Richardson numbers, Rig < 0.25, and the overall results for the mixed layer 
depths are almost perfect, it might be interesting to look at the effect of the turbulent 
Prandtl number on the specific mixing process. For this purpose Figure 6.11 shows 
the mixed layer depth, turbulent Prandtl number, flux Richardson number and 
buoyancy production for the different Prandtl number models used with the standard 
k-ε model (left column) and standard k-ω model (right column), respectively. 
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standard k-ε model 
     

        mixed layer depth 

 

       standard k-ω model 
       

        mixed layer depth 

           turbulent Prandtl number 

 

           turbulent Prandtl number 

        flux Richardson number 

 

        flux Richardson number 

        buoyancy production 

 

        buoyancy production 

Figure 6.11: Influence of turbulent Prandtl number for the experiment of Kato & 
Phillips (1969). Standard k-ε model (left column) and standard 
k-ω model (right column) with Rist = 0.25. 
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As shown in the preceding section there is almost no difference between the specific 
models of the k-ε and k-ω type and the standard models serve as a proxy for each of 
the model classes. The choice of the standard models further allows for a direct 
comparison of the present results with those of Umlauf et al. (2003). They also used 
the standard models and presented profiles for turbulent kinetic energy which are in 
agreement with those of the present simulations which therefore have been omitted 
in Figure 6.11.  

From the temporal evolution of the entrainment depth in the top panels it is apparent 
that the mixed layer grows slightly slower if the turbulent Prandtl number is not 
simply set to σt = 1.0. However, there is no distinguishable difference between either 
of the turbulent Prandtl number models. These effects become clear from the 
profiles of the turbulent Prandtl number in the second row. In the lower part of the 
mixed layer which is the most active zone for mixing, σt > 1.0 for all models. The 
empirical model of Munk & Anderson (1948) is even almost identical to the 
analytical model of Canuto et al. (2001) in accordance with the findings in chapters 
6.1.4 and 6.1.5. Although the profile of the Prandtl number for the model of 
Schumann & Gerz (1995) is quite similar to that of the Canuto model its maximum 
is slightly less because of the smaller neutral value for Rig = 0 just below the surface. 

In all simulations the model constant cψ3 has been adjusted according to Table 6.1 to 
fix the gradient Richardson number to the desired stationary value of Rig = 0.25. For 
σt = 1.0 the flux Richardson number shown in the third row is also Rif = 0.25 while 
the higher Prandtl numbers predicted by the individual models reduce the flux 
Richardson number and by that the efficiency of mixing. This is very nicely 
approved by the buoyancy production in the bottom panels which is largest for σt = 
1.0 and smaller for the Prandtl number models. It can also be seen that the buoyancy 
production for the k-ω model is generally less than that for the k-ε model which 
explains the slightly slower temporal evolution of the mixed layer depth. However, 
as discussed above this might be a numerical effect which is rather insignificant and 
can therefore be further neglected. 
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6.3.3 Concluding remarks 

As shown in the previous discussion and approved by the validation of the present 
numerical model, entrainment in a stratified turbulent shear layer is mainly governed 
by the stationary Richardson number Rist. For the two-equation turbulence models 
considered here a reasonable value of Rist ≈ 0.25 as found from idealized DNS of 
stratified homogenous turbulence can only be achieved if the effect of stratification 
(buoyancy production) is recognized in the balance equations for turbulence 
dissipation and  specific dissipation rate, respectively. 

The turbulent Prandtl number σt is also an important parameter as it provides the 
ratio between the turbulent viscosity and turbulent diffusion and so the gradient 
Richardson number Rig and the flux Richardson number Rif. Laboratory experiments 
and DNS suggest that the influence of stratification on the turbulent Prandtl number 
is rather small for Richardson numbers below the stationary limit Rig < 0.25 and 
indeed, the present validation of the numerical model showed only a marginal effect 
of the Prandtl number on the overall evolution of the mixed layer depth. However, a 
reasonable prediction of the maximum flux Richardson number Rif ≈ 0.2 found from 
laboratory experiments and DNS requires to adequately account for the effect of 
stratification on σt.  

All five turbulence models that have been considered in the present validation 
showed almost similar results that were in good agreement with the reference data 
(provided Rist is set accordingly). Alike, all the different models for the turbulent 
Prandtl number gave comparable results with a reasonable estimation of Rif ≈ 0.2. It 
can therefore be concluded that for a proper simulation of wind induced entrainment 
in a stratified medium the choice of turbulence model is arbitrary and except for a 
constant turbulent Prandtl number the model for σt plays an insignificant role. 
Recalling the results of the preceding chapter on unstratified cylinder flow it follows 
for the planned simulations of entrainment in a density current induced by a circular 
cylinder that the best choice will be the SST k-ω model with either of the relations 
for σt. 
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7 Natural density currents 

Before the influence of a cylindrical structure on the entrainment in a density current 
is investigated it useful first to study the undisturbed case. This chapter is therefore 
dedicated to the analysis and simulation of natural density currents. It will introduce 
a simple theory based on depth integrated equations and derive some simple 
parameterizations for the natural entrainment rates in density currents. These can be 
used as a reference for the analysis of the effect of a circular cylinder on the 
entrainment rates that will follow in the next chapter. 

7.1 Theory 

As mentioned before, gravity currents behave similar to open channel flows with the 
major difference being the reduced gravity that will cause all motions to slow down. 
Hence, some of the relations to be derived next might look familiar as they appear to 
be the same in open channel hydraulics except for the magnitude of gravity. 

7.1.1 Problem definition 

The main interest in this thesis lies on density currents as they typically occur in the 
Baltic Sea. The first characteristic being that the current advances in the ambient 
lighter fluid of the Baltic Sea which is assumed to be unstratified and stagnant. The 
second characteristic is that the density difference between the water from the North 
Sea and the water from the Baltic is only due to differences in salinity. Furthermore, 
the influence of wind or wave induced turbulence will be neglected as it is supposed 
that the bottom induced turbulence caused by the moving current is some orders of 
magnitude larger. However, this is only an assumption made here for simplicity and 
might be analyzed more thoroughly in the future. Last but not least the shallow 
water approximation, as introduced in chapters 3.7 and 6.1.2 will be made, assuming 
that vertical scales are very much smaller than horizontal scales. 
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A definition sketch of the density currents under investigation is given in Figure 7.1. 
The current moves along the x-axis on the floor of an ambient stagnant fluid of 
constant density ρ0. The bottom is tilted by an angle α such that the driving force for 
the current is g·sin(α) − see (7.5), below. The total water depth is denoted by H and 
the depth of the density current − to be defined in the following − by D. As the 
current travels at a speed of U it will entrain a part of the surrounding lighter water 
which is sketched by the vectors above the interface indicating the entrainment 
velocity wE − cf. chapter 6.2. According to equation (6.13) the rate of entrainment 
can then be defined as the ratio between wE and U.  

Figure 7.1: Definition sketch of a density current. 

Before a theory can be derived it is necessary first to define the bulk speed and depth 
of the current. It seems evident that they are related to the density and velocity 
profiles that are given in the left part of the sketch. It is worth noting that both 
profiles resemble a natural state without the effect of Coriolis forces which will alter 
the velocity profile quite significantly as will be shown later. The question is how 
the depth dependent quantities can be used to define some bulk quantities. The way 
this is done here is adopted from Arneborg et al. (2007) where the succeeding theory 
is also given. 
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7.1.2 Depth integrated balance equations 

In the general case where the current travels on the x-y-plane with the bulk velocity 
in y-direction given by V, the following depth integrated quantities can be defined: 

0
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( ) d
H zg D g zρ ρ

ρ
−′ = ∫ , (7.1)
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00
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UD u z z= ∫ , (7.3)
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H

VD v z z= ∫ . (7.4)

Combining (7.1) and (7.2) defines the depth D as twice the distance between the 
bottom and the center of gravity of the current. The velocities U and V are obtained 
when (7.3) and (7.4) are divided by D. The same procedure applied to (7.1) yields 
the reduced gravity g′ which represents the driving force for the current. As can be 
seen from the integrand in (7.1) the reduced gravity will only accelerate the denser 
fluid because it is zero where the depth dependent density equals the reference 
density ρ0. 

However, as long as the bottom is not tilted the dense layer will remain stagnant 
because then gravity is perpendicular to the bottom. Hence, the coordinate system 
will be tilted by an angle α, with the x-axis pointing downslope and the y-axis being 
parallel to the depth contours. This will also tilt gravity which becomes  
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, (7.5)

where tan α is the bottom slope. The right hand side of (7.5) was simplified under 
the assumption that the bottom slope is small, hence cos α ≈ 1 and sin α ≈ tan α ≈ α. 
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Volume balance 

The continuity equation which is a volume balance for the density current can be 
written in terms of the bulk quantities as 

E
D UD VD w
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
. (7.6)

It shows that in the stationary case the entrainment of lighter ambient water by the 
rate wE will increase the volume flux of the current while if the current is followed 
with the speed (U,V) its depth will increase with time. 

From here on only the latter case will be regarded further as it simplifies the 
derivation and the understanding of the following equations. The one-dimensional 
view simulates a vertical water column following the current and was also used in 
the preceding chapter. It is computationally much less expensive than a complete 
three dimensional model without loosing generality for the main physical aspects. 

Momentum balance 

The one-dimensional depth integrated momentum balance is derived from (3.38)(b) 
by neglecting the advective terms and combining the turbulent viscosity νt and the 
molecular viscosity ν to an effective viscosity νeff. Integrating over depth yields 
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where the overbar has been dropped for simplicity, keeping in mind that all 
equations contain the mean quantities. Recalling the assumptions made above with 
the problem definition these equations are subject to the boundary conditions 
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With the definitions of the bulk quantities defined by (7.1) − (7.4) the depth 
integrated momentum equations in terms of bulk quantities can finally be written as 

0
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, (7.10)
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where τbx and τby represent the bottom shear stresses defined by 
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Mass balance 

The mass balance for the density current arises from the transport equations for 
temperature and salinity (3.38)(c) and (d). As density is a function of temperature 
and salinity the mass balance is basically a transport equation for density which can 
be derived from the according transport equations for temperature and salinity. Even 
if this is generally possible it is useful to make two more simplifications before. First, 
it will be assumed that density varies linearly with temperature and salinity (in case 
of salinity this assumption is justified indeed (cf. chapter 2.5). Hence, 

( ) ( )0 0 0T ST T S Sρ ρ β β= + − + − , (7.13)

where βT and βS are the constant expansion coefficients. Secondly, the molecular 
diffusivities are neglected and the turbulent Prandtl numbers are supposed to be 
equal (σT = σS = σt), an assumption already made in the derivation of the turbulent 
buoyancy flux (3.51). Neglecting the advective terms the transport equation for 
density becomes 
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which is subject to the boundary conditions 

0
0

z z H
z Hz

ρρ ρ
= =

=

∂
= = =

∂
. (7.15)

However, as the ambient fluid is stagnant, (7.14) can also be written in terms of the 
density difference Δρ = ρ – ρ0 by simply subtracting the reference density ρ0, giving 
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for which the same boundary conditions as (7.15) apply. 

Multiplying (7.16) by g/ρ0, integrating over depth and obeying the boundary 
conditions yields the mass balance in terms of bulk quantities which is given by 

0g D
t
′∂
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. (7.17)

It states that buoyancy will decrease due to the entrainment of ambient fluid as it 
was found above that entrainment will cause an increase of D. The rate of decrease 
is given by 

E
g g w
t D
′ ′∂
= −

∂
, (7.18)

which was found by combining (7.16) and (7.6). Recalling the definition of g′ it 
turns out that mixing will cause a decrease of the density difference which is a 
logical consequence. 

Kinetic energy balance 

The depth integrated kinetic energy balance is obtained following the procedure 
described in chapter 3.1 (cf. equation (3.1)), by multiplying the momentum 
equations (7.7) and (7.8) with their respective velocities and summing up.  
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Integration over depth yields 
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where the Coriolis terms have canceled out. Introducing the form functions γk and γb, 
given by 
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and defining the total depth integrated bulk production of turbulent kinetic energy 
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the depth integrated kinetic energy balance in terms of bulk quantities can be written 
as 
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where Us is the total speed of the current given by 

2 2
sU U V= + . (7.24)

It should be noted that the form functions γk and γb are equal to one in the ideal case 
of box profiles for velocity and salinity and close to one for natural profiles. 
However, the exact value is not important in the present context as the most 
important term in (7.23) is the bulk production of turbulent kinetic energy Pb which 
appears as a sink term in the mean kinetic energy balance and shows that by the 
production of turbulence the mean kinetic energy decreases. 
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Potential energy balance 

The total potential energy (per unit area) of a water column is defined as 

,
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p totE z gz zρ= ∫ . (7.25)

However, the total potential energy is based on the total density which will give a 
very huge number and is rather of limited interest as only the density difference 
between the ambient fluid and the current is subjected to mixing. Therefore a 
background potential energy given by the density of the ambient fluid 
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is subtracted from (7.25) to give the available potential energy in terms of the 
density difference: 
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In analogy to the kinetic energy balance above, the balance equation for the potential 
energy can be obtained from the mass balance (7.16), which when multiplied by gz, 
and integrated over depth gives 
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Noting that the gradient of the density difference is the same as the gradient of the 
total density, the integrand on the right hand side of (7.28) turns out to resemble the 
buoyant production term (3.52). Hence, by dividing (7.28) by the reference density 
ρ0, obeying the boundary conditions (7.15) and inserting (7.2) the potential energy 
balance in terms of bulk quantities can be written as 
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In analogy to the bulk production of turbulent kinetic energy (7.22) the total depth 
integrated bulk buoyancy production is defined as  
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which by definition makes a positive contribution for favorable stratification where 
density increases with depth. It is now seen what has been postulated a few times 
before, that mixing with the ambient fluid expressed by the production of buoyancy 
on the right hand side of (7.29) will increase the potential energy of a density current. 

7.1.3 Momentum balance revisited 

The balance equations presented in the preceding section are generally valid and 
already provided some theoretical insights into the physics of gravity currents. For 
the further discussion, however, it is useful to introduce some other definitions that 
mainly affect the momentum balance which will therefore be revisited now. 

All balance equations above are written in terms of bulk parameters of the current. 
The momentum balance (7.10) and (7.11), however, still includes the bottom shear 
stress term on the right hand side which is not a bulk property yet. It can be 
transformed by applying a common parameterization used in open channel 
hydraulics where the bottom shear stress is assumed to be proportional to the square 
of the mean depth integrated velocity. The general quadratic friction law is given by 

0 0,bx D s by D sC U U C U Vτ ρ τ ρ= = , (7.31)

where Cd is the general drag coefficient and Us is the total speed of the current given 
by (7.24). There are many similar forms of the general quadratic friction law the 
most famous being those of Darcy/Weisbach and Colebrook/White, Chézy and 
Manning/Strickler. The major difference between these friction laws stems from 
their derivation and the resulting coefficients which are related by: 
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The actual friction at the bottom depends on the roughness of the bottom which is 
conveniently expressed in terms of an equivalent sand roughness as introduced in 
chapter 3.8. Unfortunately, the relation between the friction coefficients and the sand 
roughness is nonlinear and depends on the current velocity and current depth. For a 
turbulent flow Colebrook/White gave the following implicit formula:  
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with the Reynolds number of the flow given by 

s hyU d
Re

ν
= , (7.34)

and the hydraulic diameter defined as 

4hyd D= . (7.35)

In oceanography it is common practice to consider bottom friction in terms of the 
general drag coefficient which takes values in the range of 0.002 < Cd < 0.003. For a 
typical density current occurring in the Baltic Sea this implies an equivalent sand 
roughness of 0.02 m < ks < 0.10 m which seems to be a reasonable range for the sea 
floor. It should be noted that bottom friction can be well parameterized by the 
equivalent sand roughness ks but the law of Colebrook/White (7.33) is only an 
approximation to relate the bottom roughness to the bottom drag by the bulk speed 
and depth of the current. In the present numerical model the actual bottom drag 
stems from the wall functions approach given by (3.150) - (3.152) as described in 
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chapter 3.8. The difference between the real bottom drag and approximation in terms 
of bulk flow properties will be discussed later in section 7.2.3. 

With the parameterization of the bottom shear stress the momentum balance can be 
completely written in terms of bulk parameters of the flow: 

sin d s
UD g D fVD C U U

t
α∂ ′= + −

∂
, (7.36)
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With the entrainment rate as introduced in chapter 6.2 and given in the present 
terminology as 

E

s

wE
U

= , (7.38)

and the definition of the entrainment velocity given by the volume balance (7.6) the 
momentum balance can be rewritten as 
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, (7.39)

( )s
d

V U VfU C E
t D

∂
= − − +

∂
. (7.40)

This form of the momentum balance gives a new insight in the interpretation of 
entrainment in a density current. The entrainment rate E acts like a drag coefficient 
and describes the effect of shear in the interface between the moving current and the 
stagnant ambient fluid. Furthermore, the effect of Coriolis forces as shown in 
chapter 2.4 on the current can be clearly identified from (7.40). Assuming the 
bottom slope is directed to the north such that the x-axis points northwards and the 
y-axis points westwards then the initial flow direction will be downslope 
(northwards) implying a positive velocity U.  Through the first term on the right 
hand side of (7.40) this induces an acceleration in negative y-direction (eastwards) 
which means a deflection to the right just as postulated for the northern hemisphere. 
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A still better insight into the balance of forces can be gained if the coordinate system 
is rotated such that the principal axis points to the main flow direction rather than the 
main slope. Defining the new coordinate system with (m, n) and the rotation angle 
by 

arctan V
U

β ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (7.41)

then the velocities in m- and n-direction are given by 

cos sin  ,     sin cos 0sU U V U V U Vβ β β β′ ′= + = = − + = , (7.42)

showing that the streamwise velocity corresponds to the total speed of the current 
while the cross-stream velocity cancels out. In the rotated system there is now a 
slope in both coordinate directions with the respective angles given by  

sin sin cos  ,   sin sin sinm nα α β α α β= = − . (7.43)

Obeying these relations the momentum equations in the new coordinate system 
become: 

( )
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, (7.44)
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It is interesting to note that the rotation of the reference system yielded a sorting of 
the relevant external forces on the right hand side. In main flow direction the 
Coriolis term vanished and only drag forces remained while in cross flow direction 
the latter disappeared and the Coriolis force remained. This becomes even clearer if 
some further simplifications are made. As will be shown later, for subcritical flows 
the entrainment rate is one to two orders of magnitude less than the bottom drag 
coefficient and can therefore be neglected in the momentum balance. In this case the 
inertia terms on the left hand side are also likely to be of minor importance and can 
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be ignored, too. Then the the current is in geostrophic balance and the momentum 
equations can finally be written as: 

2

sin d s
m

C Ug
D

α′ = , (7.46)

sin n sg fUα′ = . (7.47)

These relations show that in main flow direction the gravity force is balanced by the 
bottom drag while in cross-flow direction it is balanced by the Coriolis force. The 
simplification of the momentum equations by the assumption of geostrophic balance 
allows for the derivation of some more interesting facts which will be discussed next. 

7.1.4 Froude number and Ekman number 

The Froude number describes the ratio between inertia force and gravitational force 
and is the most important characteristic parameter in open channel hydraulics. The 
same applies to density currents with the only difference being the gravitational 
force which is given by the reduced gravity g′. To distinguish between the open 
channel Froude number and that for a density current, the latter is often referred to 
as ‘densimetric Froude number’. Here, however, only density currents are regarded 
and the term ‘densimetric’ will be neglected in the following. 

In the present terminology the Froude number in the most general form is given by 

cos
s

m

UFr
g D α

=
′

, (7.48)

where the bottom slope angle is not necessarily small. The nominator in (7.48) is the 
speed of long interfacial waves that will only propagate upstream in subcritical 
conditions if Fr < 1. Another interpretation of the Froude number can be gained 
from the combination of (7.48) with the geostrophic momentum balance in main 
flow direction (7.46), giving 
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tan m
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Fr
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= . (7.49)

This formulation shows that for subcritical flow conditions the bottom slope must be 
less than the drag coefficient which provides a good estimate for the slopes in a 
natural situation recalling the common range for Cd above. For supercritical flows, 
however, equation (7.49) loses its validity as the entrainment rate and the inertia 
terms become larger and the assumption of geostrophic balance breaks down. 

The Ekman number for a density current can basically be defined as the ratio 
between the Ekman layer thickness and the depth of the current. In terms of the 
parameterized bottom friction this can be written as: 

d sC UK
f D

= . (7.50)

Unlike the Froude number, the Ekman number does not depend on the density 
difference between the current and the ambient fluid and is mainly a measure for the 
influence of Coriolis forces. For small Ekman numbers when the Ekman layer is 
much thinner than the current depth the effect of Coriolis forces is large and the 
current will be strongly deflected and follow the contour lines of the slope. A large 
Ekman number in contrast implies an Ekman layer which is thicker than the current 
depth such that Coriolis forces become less important and the current will flow 
straight down the slope. 

This interpretation of the Ekman number follows directly from the geostrophic 
momentum balance. Dividing (7.46) by (7.47) and applying the relations in (7.43) 
yields: 

1tan
K

β = − , (7.51)

which approves that β → 0° for large Ekman numbers and β → −90° for small 
Ekman numbers. Please recall that the present coordinate system had been defined 
with the x-axis pointing downslope and the y-axis pointing to the left along the depth 
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contours. A current following the slope therefore yields β = 0° while a deflection to 
the right implies β < 0°. 

Finally, the Froude number and the Ekman number can be formally related to each 
other by a combination of the momentum balance equations (7.46) and (7.47). In 
terms of the total slope and the bottom drag coefficient this functional relationship is 
given by: 

( ) 1 41 2 2sin 1
d

Fr K K
C
α −

= + . (7.52)

In the limits of small and large Ekman numbers (7.52) can be simplified. For large 
Ekman numbers the Froude number becomes independent of K and approaches 

sin

d

Fr
C
α

= . (7.53)

For large K, tan αm ≈ tan α and for small α, tan α ≈ sin α, which shows that (7.53) is 
identical to (7.49) if small bottom slopes are assumed.  

For small Ekman number K < 1, the term in brackets on the right hand side of (7.52) 
approaches 1 and the Froude number can be expressed as 

1 2sin

d

Fr K
C
α

= . (7.54)

Even if the theoretical relation between the Froude and Ekman number might be an 
interesting feature which will indeed be used in the following validation of the 
numerical model, the major interest here is on the entrainment. 

7.1.5 Entrainment 

The general idea of entrainment and the mechanisms involved have been discussed 
in chapter 6.2 where also some entrainment laws proposed in the literature have 
been presented. The scaling parameter for entrainment in stratified flows was 
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identified to be the bulk Richardson number which is a general quantity that applies 
to all the different entrainment situations. Although the entrainment in gravity 
currents can also be described in terms of the bulk Richardson number it seems more 
appropriate in the present context to use the Froude number. For small bottom slopes 
the Froude number and the bulk Richardson number are related by 

2 0 1s s
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U UFr
g D g D Ri

ρ
ρ

= = =
′ Δ

, (7.55)

such that all entrainment laws given in chapter 6.2 can in priciple also be given in 
terms of the Froude number. However, this is actually only meaningful in case of 
density currents for which a Froude number can be defined. 

The entrainment rate as given by (7.38) is made up of the current speed and the 
entrainment velocity which within the context of the theory presented above can be 
determined in two different ways. The first directly stems from the volume balance 
of the current (7.6) where wE is determined as the increase of the current depth and 
volume flux, respectively. In case of a one-dimensional model this simplifies to 

E
Dw
t

∂
=
∂

, (7.56)

which relates the entrainment to the temporal evolution of the mixed layer depth. 
Indeed, the formula of Price (1979) for the temporal evolution of the mixed layer 
depth due to wind entrainment (6.17) is not explicitly given in the original paper but 
has been derived applying (7.56) to the presented entrainment law. 

The second way to determine the entrainment velocity stems from the balance of 
potential energy (7.29) which by use of (7.56) can be rewritten 

21 1
2 2 E bg D g Dw G

t
∂ ⎛ ⎞′ ′= =⎜ ⎟∂ ⎝ ⎠

, (7.57)

and finally yields 
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This form of the entrainment velocity is more meaningful in terms of the actual 
source of mixing namely buoyancy production induced by turbulence. In chapter 
6.1.3 the ratio between the total turbulence production and the amount that is used 
for buoyancy production was determined as the flux Richardson number. In the 
present depth integrated framework a bulk flux Richardson number can be 
established from the bulk production terms (7.22) and (7.30): 
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Assuming weak slopes (subcritical flow) and quasi stationary conditions such that 
the entrainment rate is much smaller than bottom drag and the left hand side of (7.23) 
vanishes, (7.46) can be used to rewrite Pb as 

3sinb b s m b d sP g DU C Uγ α γ′= = . (7.60)

This expression together with the buoyancy production given by (7.57) and the 
definition of the entrainment rate (7.38) can be used to rewrite the bulk flux 
Richardson as  

, 3
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g DU ERi
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= , (7.61)

which finally provides an entrainment law derived analytically within the present 
depth integrated theory: 

2
,2 f b dE Ri C Fr= . (7.62)

It should be stressed that due to the assumptions made above in the derivation of 
(7.62) this entrainment law is only valid for subcritical flow conditions (Fr < 1), 
where bottom slopes are small, entrainment is much less than bottom drag and the 
inertia terms can therefore be neglected. Interestingly, most of the entrainment laws 
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presented in chapter 6.2 show the same Froude number squared dependence for this 
flow regime (cf. relation of Rib and Fr in (7.55)). However, all of these laws assume 
a constant factor in front of Fr2 which is unlikely to be generally valid and explains 
the large scatter in the different factors proposed. For subcritical flows the bottom 
drag coefficient and the Froude number can be eliminated by substituting (7.53) into 
(7.62) to give 

,2 tanf b mE Ri α= , (7.63)

which shows that for subcritical flows entrainment is solely governed by the bottom 
slope (in flow direction) and the bulk flux Richardson number. Pedersen (1980) and 
Stigebrandt (1987) proposed very similar laws and assumed that for subcritical flows 
the ratio between entrainment and bottom slope is constant E/tan αm = 0.071 which 
in the present theory implies a constant bulk flux Richardson number of Rif,b ≈ 0.035. 
However, as shown by the numerical experiments of Arneborg et al. (2007) it is 
unlikely that Rif,b is constant throughout the whole subcritical flow regime. Much 
more it can be assumed that bottom roughness and Froude number will have a 
certain influence on the efficiency of mixing. Indeed, Arneborg et al. (2007) found 
that all their data for the flux Richardson number could be collapsed onto a single 
curve dependent on Froude number and Ekman number which has been given by 

0.65 0.6
, 0.042f bRi Fr K= . (7.64)

Inserting (7.64) into the present entrainment law (7.62) this can be rewritten in terms 
of Ekman number and bottom drag coefficient 

0.6 2.650.084 dE K C Fr= . (7.65)

Besides the dependence on Ekman number and bottom drag coefficient the 
entrainment rate now increases with Fr2.65 which is interestingly just in between the 
laws proposed by Christodoulou (1986) with Fr3 for very low and Fr2 for 
intermediate Froude numbers (cf. chapter 6.2). 
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Using the relation between the bulk Richardson number and the Froude number 
given by (7.55) the data in Figure 6.7 can be recast in terms of the Froude number. 
These are shown in Figure 7.2 together with the present entrainment law represented 
by the thick line. 

Figure 7.2: Entrainment rate versus Froude number. Comparison of entrainment 
laws and measurements from the literature (cf. Figure 6.7). Note that 
the present theory is actually not valid (see text).  

The slope of 2.65 in the logarithmic plot seems to be a reasonable value which 
makes the present law lying in between the laws of Stigebrandt (1987) and 
Christodoulou (1986) and is a nice approximation of the measured data. Actually, 
the curve has been fitted to the data by adjusting the factor in front of the Froude 
number, but the chosen value of 1.5·10-3 also seems to be quite reasonable. It results 
from K0.6Cd ≈ 0.018 or with Cd = 0.003, as assumed for the other laws, from K ≈ 20 
which is rather high and indicates a very small influence of Coriolis forces 
consistent with the data that have almost all been gathered from experiments in 
channels without rotation. 
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However, this very nice and at first sight absolute logically derived result is 
unfortunately not valid. The reason is that for large Ekman numbers say, K > 3, the 
present theory actually breaks down as the Froude number becomes independent of 
the Ekman number (cf. eq. (7.53)) and the entrainment law reads  

0.6 0.325 1.3250.084 sindE K C α−= . (7.66)

For constant bottom slope and bottom drag the entrainment rate thus only depends 
on the Ekman number and tends to infinity in the limit of a non rotating frame of 
reference. Nevertheless, it is interesting that the present theory yields a slope of 2.65 
for the entrainment rate and the curve in Figure 7.10 has been included in order to 
visualize the good agreement of this result with entrainment data from non rotating 
laboratory experiments. The derivation of a valid theory supporting this slope could 
be a task for further research. 

For smaller Ekman numbers as they are typically found in natural oceanic density 
currents like in the Baltic Sea the theory is definitely valid and for K < 1 the present 
entrainment law can be transformed by use of (7.54) giving 

0.6 1.6 3.850.084sin dE C Frα−= . (7.67)

This relation shows that entrainment is solely governed by the total bottom slope and 
bottom drag. The large exponent of the Froude number implies a much faster 
decrease of the entrainment rate than suggested by the data (from non-rotating 
experiments) in Figure 7.10. However, this is physically reasonable following a 
suggestion by Stigebrandt (1985) who argued that the bottom generated turbulence 
is restricted to the Ekman layer and for K < 1 is therefore hindered to reach the 
interface which will eventually reduce mixing. Furthermore, the field data of 
Baringer & Price (1997) and the rotating experiment data of Cenedese et al. (2004) 
included in Figure 7.10 also indicate a slightly steeper slope. This will be discussed 
in more detail in the next section when the influence of bottom friction and bottom 
slope on the entrainment rates is investigated. 
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7.2 1−D modeling of natural density currents 

In the preceding chapter it was found that the choice of the turbulence model only 
marginally influences the wind induced entrainment in a stratified stagnant water 
body. Much more the governing parameter was identified to be the stationary 
Richardson number. Even if the wind induced mixing is a good test case for a 
numerical model the physical background of a density current moving on a sloping 
bottom is slightly different. The major difference lies in the stratification which is 
now mainly confined to the interface between the moving current and the stagnant 
ambient water. This configuration also alters the sources for turbulence which are 
now found at the bottom shear layer and the shear layer in the interface.  

Therefore it is advisable first to apply all turbulence models again in a specific 
benchmark test to shortly identify their strengths and weaknesses. In the succeeding 
more detailed validation only the SST k-ω model is used, as it was found above to 
be the most suitable model for the simulation of cylinder induced entrainment. 

7.2.1 Model setup 

As for the wind entrainment experiment above it is sufficient to validate the 
numerical model for the simulation of undisturbed gravity currents with a one-
dimensional model where only the vertical domain is resolved. Therefore a similar 
grid like above is used with the horizontal domain made up of only one grid cell and 
periodic boundary conditions applied on the lateral boundaries. To account for the 
effect of bottom roughness a wall boundary condition with ks = 0.025 m has been 
used in all simulations and the free surface at the top is always simulated with a 
symmetry (slip) boundary condition.  

Although the benchmark test has been arbitrarily defined it should at least 
approximately represent the natural conditions in the Baltic Sea. For this purpose the 
bottom roughness had been set to ks = 0.025 m to account for realistic conditions at 
the sea floor. Coriolis forces correspond to a location 55° longitude North with a 
parameter f  ≈ 1.19·10-4 1/s. The only driving force for the current stems from the 
bottom slope which has been chosen to be quite steep with tan α = 1.78·10-3. The 
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total water depth is H = 40 m and the initial current depth is D = 7.0 m. The salinity 
difference between the current and the ambient fluid is ΔS = 10 PSU which implies a 
density anomaly of Δρ = 7.85 kg/m³ and a reduced gravity of g′ = 0.0765 m/s². The 
global initial conditions for the benchmark test are compiled in Table 7.1. 

 
tan α [‰] ks [m] D [m] ΔS [PSU] Fr 

1.78 0.025 7.0 10.0 0.8 

Table 7.1: Initial conditions for the one-dimensional simulations of entrainment
in an undisturbed gravity current. 

The distribution of salinity is initially approximated by a simple box profile such 
that a realistic profile will evolve during the starting period of the simulation. In 
order to keep the initial settling time for the current as short as possible also box 
profiles for the velocities are applied that approximate the geostrophic balance. The 
initial profiles of density anomaly and velocity are displayed in Figure 7.3 where 
also the resolution of the numerical grid is shown in the left panel. 

 
        grid resolution          density anomaly         velocity 

Figure 7.3: Grid resolution and initial conditions for the one-dimensional 
simulations of entrainment in an undisturbed gravity current. 

As can be seen the grid is refined to the bottom in order to resolve the steep 
gradients of velocity and turbulence quantities in the boundary layer. The interface is 
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initially located at z = 7 m and will rise during the simulation due to entrainment. 
Therefore the region 5 m < z < 15 m has a constant resolution of Δz = 0.2 m in order 
to provide constant numerical settings during the evolution of the current. It should 
be noted, that the chosen resolution is comparably fine and preliminary tests have 
shown almost similar results for Δz = 0.5 m. However, as the numerical effort for 
the present grid size of 117 cells over the total water depth is relatively small the 
finest grid was chosen for the present validation. The region of the stagnant ambient 
fluid is numerically easy to treat and requires no specific resolution such that the 
grid for z > 15 m could be made increasingly coarser. 

7.2.2 Comparison of different turbulence models 

From the model validation in chapter 6 it could be concluded that for the simulation 
of entrainment in a stratified shear layer with two-equation turbulence models the 
choice of the specific model is rather unimportant as long as the governing 
parameters (Rist and σt) are adequately incorporated. This shall now be approved by 
the simulation of a gravity current. For all turbulence models the turbulent Prandtl 
number is given by the model of Schumann & Gerz (1995) and the constant cψ3 has 
been adjusted to fix the stationary Richardson number to Rist = 0.25. 

As shown in chapter 6, a unique definition of the stationary Richardson number is 
not possible for the RNG k-ε model due to the additional term in the ε-equation. For 
the wind induced entrainment simulations this had no significant effect although 
slightly different results compared to the other two k-ε models could already be 
noticed. However, for the present simulation of gravity current dynamics this 
discrepancy is obviously much more severe as the RNG k-ε model was susceptible 
to instabilities and the results showed very strange behavior compared to the other 
models. Therefore this model has not been regarded further and the following 
discussion is limited to the standard and realizable k-ε model and the standard and 
SST k-ω model. 

All simulations were started with the initial conditions described above and run over 
5 days. Figure 7.4 shows the temporal evolution of the current depth, entrainment 
rate, Froude number and Ekman number. It is obvious at first sight that the 
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difference between the individual turbulence models is marginal. From the current 
depth in the upper left panel it can be seen that the k-ε models and k-ω models are 
pairwise identical and that the k-ω models predict a slightly slower growth of the 
layer thickness. The same behavior could be observed in the wind entrainment 
experiment and is also here attributed to some kind of numerical error. 

      Current depth 

     

       Entrainment rate 

      Froude number          Ekman number 

Figure 7.4: Comparison of different turbulence models. Temporal evolution of 
the gravity current. 

From the strong variations in the Froude number and entrainment rate at the 
beginning of the simulation it can be followed that the initial settling time of the 
current is a bit less than 1 day. The k-ω models also show some random oscillations 
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in the entrainment rate at the end of the simulation for t > 4 days. These can be 
attributed to numerical problems in association with the grid resolution which 
changes for z > 15 m corresponding to the current depth at the beginning of the 
fluctuations. However, as long as the grid resolution is constant over the interface all 
models are stable and provide basically the same entrainment rates. 

Due to entrainment the current depth increases with time as expected from (7.56). In 
this context it should be noted that the entrainment rate in the upper right panel was 
calculated from (7.58) and therefore is at first independent from the temporal 
evolution of the current depth. However, by definition both (7.56) and (7.58) should 
give the same entrainment rate, a fact that will be used in the validation of the 
numerical model in the next section. 

The Froude number and the Ekman number decrease with time as shown in the 
lower panels of Figure 7.4. The latter indicates that the current is more and more 
deflected from the straight downhill path and turns into the slope. The temporal 
evolution of the Froude number together with the entrainment rate qualitatively 
supports the theoretical entrainment laws which predict reduced entrainment with 
decreasing Froude number. Also this point will be later discussed below. 

The similarity of the different turbulence models concerning the depth integrated 
results is also found in the details. For a current depth of D = 10 m after about 1 day 
of entrainment in the present example Figure 7.5 displays depth profiles of density 
difference, buoyancy production, streamwise and cross-stream velocity (in the 
(m, n)-coordinate system), gradient Richardson number and flux Richardson number. 
As the stagnant ambient fluid is of limited interest only the lower 20 m of the total 
depth are shown. 

Apart from some minor differences in the buoyancy production and Richardson 
numbers the profiles for all turbulence models are more or less identical. The initial 
density difference of Δρ ≈ 8 kg/m³ decreased by more than 25 % because of the 
entrainment of ambient fluid. The interface between the current and the ambient 
fluid is characterized by a more or less constant density gradient (N2 ≈ 0.01) which 
is found in the region 8 m < z < 12 m. 
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        Density difference             Buoyancy production 

      Streamwise velocity           Cross-stream velocity 

          Gradient Richardson number          Flux Richardson number 

Figure 7.5: Comparison of different turbulence models. Vertical profiles for 
current depth D = 10 m. 
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A local mixing rate can be deduced from the buoyancy production in the upper right 
panel which increases linearly from G = 0 m2/s3 at the bottom to its maximum value 
G ≈ 1.5·10-6 m2/s3 right below the interface and decreases to G = 0 m2/s3 again 
within the interface. This indicates the damping effect of stratification on turbulence 
and shows that mixing is most intense just below the interface where the ratio 
between turbulence intensity and stratification is at maximum. 

The velocity profiles in the middle panels show the typical effect of a rotating frame 
of reference. At the bottom where friction forces are dominant both profiles have the 
characteristic logarithmic form with mean flow direction downhill. With increasing 
distance from the bottom, however, the influence of bottom drag decreases and 
Coriolis forces become dominant. These accelerate the flow in streamwise direction 
with the maximum velocity right below the interface. In cross-stream direction the 
flow is deflected to the right (v < 0) with the maximum velocity in the center of the 
interface. 

From the profiles of the Richardson numbers in the lower panels it can be seen that 
within the interface the stationary values are reached indicating the validity of the 
equilibrium assumption in a stratified turbulent shear layer. At the top end of the 
interface density and velocity gradients tend to zero and the gradient Richardson 
number becomes ill-defined as indicated by the sudden increase for z > 12 m. Also 
below the interface both increase quite significantly before they approach zero at the 
bottom. This effect is most pronounced for the k-ε models and least significant for 
the standard k-ω model. However, the gradient Richardson number is a direct result 
of the density and velocity profiles which are apparently very similar. The alleged 
large differences stem from the fact that the velocity gradient enters squared into the 
nominator (cf. eq. (6.3)) such that small deviations in the velocity field can have a 
large effect on the gradient Richardson number. Hence, it still may be concluded that 
all turbulence models provide the same results. 

For the following validation of the numerical model concerning the simulation of 
density currents it is therefore sufficient to regard only one turbulence model. In 
principle the choice of the turbulence model is arbitrary, but in view of the 
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subsequent simulations of the cylinder induced entrainment it seems most 
appropriate to use the SST k-ω model and ignore the other models from now on. 

Before the model is validated against the depth integrated theory and field 
measurements in the next sections it is useful in context with the Richardson 
numbers discussed above to have a look at the kinetic energy balance. Figure 7.6 
shows the individual profiles for production of turbulent kinetic energy P, buoyancy 
production G and dissipation ε in the left panel and the ratio of production to 
dissipation R = P/(G + ε) in the right panel. 

 

Figure 7.6: Balance of turbulent kinetic energy. Profiles of production and 
dissipation (left) and ratio of production and dissipation (right). 

As discussed in chapter 6.1.5 for gradient Richardson numbers above the stationary 
value turbulence will decay while for values below it will increase. In case that the 
actual Richardson number corresponds to the stationary value production and 
dissipation are in balance which is nicely seen from their ratio in the right panel 
which is exactly R = 1 within the interface. Near the bottom it is expected that 
turbulence production outweighs dissipation which is indeed the case as R > 1 just 
above the bottom in agreement with the small gradient Richardson number in this 
region. In the intermediate region R < 1 as suggested above by the large gradient 
Richardson number. This means that in the core of the current turbulence is not in 
balance but produced at the bottom and then transported to higher levels. 
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7.2.3 Comparison with theory 

After it has been shown by now that the numerical model is able to quite accurately 
predict the general features of entrainment in a stratified turbulent shear layer 
independent of the two equation turbulence model in the background the depth 
integrated theory derived above can be used as an ideal reference for further 
validation. 

From the mass balance (7.17) it must be expected that the total buoyancy does not 
change with time. Furthermore the balance of potential energy requires that the 
entrainment rate given by (7.58) should be identical to that derived from the 
temporal increase of the current depth (7.56). Figure 7.7 shows the numerically 
evaluated and theoretical temporal evolution of the buoyancy in the left panel and 
the entrainment rates determined by (7.56) and (7.58) in the right panel. 

 
              Buoyancy           Entrainment rate 

Figure 7.7: Evaluation of numerical errors. Temporal evolution of buoyancy 
(left) and entrainment rate (right). 

The numerical model predicts a slight increase of buoyancy with time. However, 
after 5 days the difference to the theoretical value is less than 2 ‰ and can therefore 
be assumed to be negligible. Apart from the deviations at the beginning and the end 
of the simulation already argued above the entrainment rates in the right panel show 
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perfect agreement and approve the numerical balances of volume and potential 
energy. 

The Ekman number as given by (7.50) depends on the bottom drag coefficient, 
current speed, current depth and the Coriolis parameter. While the latter three are 
uniquely defined the bottom drag coefficient can principally be determined in 
several ways. The actual bottom shear stress τb depends on the velocity profile (cf. 
chapter 3.8) and is a direct result of the numerical model. With the bottom shear 
stress given the actual drag coefficient can be easily calculated according to (7.31) 
from  

2
0

b
D

s

C
U
τ
ρ

= . (7.68)

If the bottom shear stress is not explicitly known or if the velocity profiles are not 
suitable to calculate it the drag coefficient could be estimated from the bulk speed 
and depth of the current using the formula of Colebrook/White (7.33) together with 
(7.32) or if additionally the bottom slope is known from the geostrophic momentum 
balance given by (7.46) and (7.49), respectively.  

The temporal evolution of the bottom drag coefficient obtained with all three 
methods is shown in the left panel of Figure 7.8. The different methods correspond 
to equations (7.68), (7.33) and (7.46), respectively where the slope in streamwise 
direction αm for the latter has been determined from the total slope α using (7.43) 
and the deflection angle β given by (7.41). The drag coefficient derived from the 
depth integrated momentum balance (method 3) agrees fairly well with the actual 
bottom drag (method 1) and the difference between both could be explained by a 
slight overestimation of the bottom shear stress from the numerical model results. 
Apart from this difference both show identical trends and approach to a constant 
value of about Cd ≈ 0.002 which shows that the bottom drag coefficient does not 
change if the flow is in geostrophic balance. The bottom drag coefficient obtained 
from the formula of Colebrook/White (method 2) also tends to a value of Cd ≈ 0.002 
at the end of the simulation. However, the temporal evolution is quite different from 
that of the other two methods and apparently this method also does not show an 
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asymptotic behavior with a constant drag coefficient in geostrophic balance. Even if 
the differences are not severe the determination of the bottom drag from the formula 
of Colebrook/White should be handled with care and was not further regarded in the 
present work. 

 
        Bottom drag coefficient             Deflection angle  

Figure 7.8: Temporal evolution of bottom drag coefficient (left) and deflection 
angle (right). The methods for the determination of Cd in the left 
panel correspond to: method 1 → eq. (7.68), method 2 → eq. (7.33), 
method 3 → eq. (7.46) and (7.49), respectively. 

Whether the Ekman number is determined with the actual drag coefficient or the 
approximation given by (7.46) and (7.49), respectively is of minor importance as the 
results are almost identical. However, it might be interesting to compare the actual 
deflection angle of the current given by (7.41) to the theoretical angle predicted from 
the Ekman number by (7.51). The temporal evolution of the deflection angle β is 
shown in the right panel of Figure 7.8. At the very beginning of the simulation both 
are identical due to the initial conditions adjusted to geostrophic balance. As the 
velocity profiles evolve from the initial box profiles to the natural form the current 
turns more into the slope as predicted by the theory. However, after the initial 
settling time when velocity and density profiles have established the actual 
deflection angle tends back to the theoretical curve and the current is in geostrophic 
balance again. 



7 Natural density currents 

182 

The momentum balance suggests that the Froude and Ekman number are related by 
(7.52) if the flow is in geostrophic balance. This relation is shown in the left panel of 
Figure 7.9 where the theoretical curve is based on a constant bottom drag coefficient 
of Cd = 0.002. Apart from the deviations at higher Ekman numbers which are a 
result of the initial settling of the current the numerical results almost perfectly agree 
with the theoretical curve. This confirms both, the very good performance of the 
numerical model and that the current is indeed in geostrophic balance after an initial 
settling time. 

 
              Froude number vs. Ekman number              Bulk flux Richardson number  

Figure 7.9: Froude-Ekman number relation (left) and temporal evolution of bulk 
flux Richardson number (right). 

The right panel in Figure 7.9 shows the bulk flux Richardson number which is an 
important property concerning the efficiency of mixing and the prediction of the 
entrainment rate based on (7.62) and (7.63), respectively. The result of the numerical 
model stems from the ratio of the predicted buoyancy and turbulent kinetic energy 
production using (7.59) while the theoretical curve is based on the empirical formula 
(7.64) suggested by Arneborg et al. (2007). As (7.64) had been found by fitting a 
curve through numerical data the two curves shown basically provide a comparison 
between the present numerical model and that used by Arneborg et al. (2007). 
However, apart from the expected deviations at the beginning and the end the 
numerical results are in almost perfect agreement with the theoretical curve 
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supporting once more the performance of the present numerical model and the 
validity of the empirical formula (7.64). 

The latter is important for the proposed entrainment law given by (7.62) and (7.63), 
respectively. For a given bottom slope and drag coefficient (tan α = 1.78·10-3, 
Cd ≈ 0.002 in the present example) the Froude and Ekman number are distinctly 
related by (7.52). Hence, for a specific range of Ekman and Froude numbers the bulk 
flux Richardson number is given by (7.64) and the entrainment rate can be computed 
from (7.62). This theoretical prediction is compared to the present numerically 
predicted entrainment rates in Figure 7.10. For further comparison the field data of 
Baringer & Price (1997), the laboratory data of Cenedese et al. (2004) and the 
entrainment law of Stigebrandt (1987) with Cd = 0.002 are also shown. 

 

Figure 7.10: Entrainment rate versus Froude number. Comparison of present 
numerical model results with measurements and entrainment laws. 
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The agreement between the numerical model results and the present theory is 
expectedly striking and compared to the model of Stigebrandt (1987) entrainment 
decreases faster with decreasing Froude number (cf. eq. (7.70) and adjacent text). 
Note in this context that for the sake of better presentation the x-axis has been 
linearly scaled such that the entrainment laws do not appear as straight lines like in 
Figure 7.2 and Figure 6.7. 

As mentioned in chapter 7.1 for large Ekman numbers the Froude number becomes 
independent of the Ekman number and the present theory will seize to be valid as 
indicated by the almost vertical increase of the entrainment rate for Fr ≈ 0.93. For 
density currents in the Baltic Sea which are of major interest here the Ekman 
number will usually be relatively small and the present entrainment law represents 
an ideal theoretical reference. 

However, for the current example the numerically and theoretically predicted 
entrainment rates seem to be lower than those measured in the laboratory and the 
field, although the Ekman numbers in the experiments of Cenedese et al. (2004) 
were comparable to those found here. The reason for this alleged underestimation 
can therefore only be found in the steep slope and the relatively small bottom drag 
coefficient. This issue will be discussed in the following final validation of the 
numerical model against field measurements in the Baltic Sea. 

7.2.4 Comparison with field measurements 

The discussion in the previous two sections has shown that the present numerical 
model is very well suited to calculate the dynamics and entrainment rates of natural 
undisturbed density currents. Hence, the validation could actually be regarded as 
completed at this point. However, as there are very good current field measurements 
available which have also served as a reference for the numerical simulations of 
Arneborg et al. (2007) these data will now be used for a final validation of the 
present model and a discussion of the influence of bottom induced turbulence on the 
entrainment rates. 
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Description of the observed data 

From January 26 to February 13, 2004 an extensive cruise was carried out within the 
framework of the QuantAS project in order to obtain measurements of medium-
intensity saltwater inflows into the Baltic Sea. Luckily, such an event started on 
February 1 (Burchard et al. (2005)) entering the Baltic Sea over Drogden Sill and 
traveling down the sloping bottom into the Arkona Basin. 

A map of the observed area is given in Figure 7.11 where the approximate pathway 
of the current is sketched by the thick lines. In front of Kriegers Flak the current 
splits up and passes the shoal on the northern and southern side. The dashed line 
indicates that only a minor portion of the current flows southward while the major 
part passes Kriegers Flak on the northern side (see Burchard et al. (2005)). 

 

 
Figure 7.11: Contour map of the Baltic Sea between Drogden Sill and Arkona 

Basin. Pathway of the density current sketched by the full and 
dashed line and measurement station indicated by the star. 
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From February 6 to 7 velocities, temperature, salinity and turbulence dissipation 
rates were measured at a 38 m deep fixed location North of Kriegers Flak indicated 
by the star in Figure 7.11. A detailed discussion of the measurement equipment and 
the obtained data set is given in Arneborg et al. (2007) and will only briefly 
summarized here. 

The current velocities were measured by an acoustic Doppler current profiler 
(ADCP) mounted in the sea chest of the ship at 3 m depth and taking a velocity 
profile with 1 m resolution every 1.4 s. The velocities can be regarded as quite 
reliable up to about 2 m above the ground where the ultra sonic signal can be 
contaminated by bottom echoes from side lobes of the downward looking ADCP. 
Furthermore, as pointed out by Arneborg et al. (2007) the mean gradient Richardson 
number within the current interface might be overestimated due to the finite depth 
resolution of the velocity profiles and the time averaging process to obtain the mean 
velocity gradients. A standard precision conductivity, temperature, depth (CTD) 
profiler was used to obtain data of the density stratification which can also be 
assumed to be quite reliable. Profiles of the turbulence dissipation rate as well as 
horizontal velocity fluctuations and thermal microstructures were measured with a 
microstructure (MST) profiler (Prandke (2005)) equipped with a pair of airfoil shear 
probes and a fast microthermistor.  

From the profiles of velocities and density the bulk quantities of the current were 
obtained with (7.1) − (7.4) where a logarithmic velocity profile with an equivalent 
sand roughness of ks = 0.3 m has been assumed to complete the missing velocities at 
the bottom. The comparably high bottom roughness is a result of the estimation of 
the bottom friction from the turbulence dissipation rate according to 

( )2 3
b zτ ρ κ ε= , (7.69)

where κ ≈ 0.41 is the von Kármán constant (cf. eq. (3.145) in chapter 3.8) and z is 
the distance from the bottom. With (7.70) the bottom drag coefficient was 
determined to be Cd = 0.0037 ± 0.0015 which is rather high as extensively discussed 
by Arneborg et al. (2007). 
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The entrainment rate was calculated from the bulk speed of the current Us and the 
entrainment velocity wE given by (7.58) where the bulk buoyancy production Gb is 
given by (7.30). The turbulent diffusion needed to evaluate Gb was estimated from 
the measured turbulent dissipation rate by the model of Osborn (1980): 

20.2t N
εν ′ = . (7.70)

However, as argued by Arneborg et al. (2007) relation (7.70) is only valid within the 
interface such that the buoyancy flux below was assumed to linearly decrease 
towards the bottom implying a well mixed bottom layer with a depth independent 
rate of density change (cf. eq. (7.14)). Using this approach the bulk buoyancy 
production and the resulting entrainment rates were found to significantly change 
over the whole 19 hour observation period although the Froude number was almost 
constant. This is in contradiction to any theory and observation mentioned above and 
could not ad hoc be explained yet. For a comparison with numerical simulations it 
seems therefore advisable and was also done by Arneborg et al. (2007) to use the 
complete 19 hour average where at least short term fluctuations are smoothed out.  

Table 7.2 summarizes these 19 hour averages of the bulk parameters, where the 
values of depth, velocity, bottom drag coefficient, Froude number, and entrainment 
rate have been taken from Arneborg et al. (2007). The values for reduced gravity 
and Ekman number have been computed from (7.48) and (7.50), respectively and 
slightly differ from the original paper. However, compared to the uncertainties in the 
measurements the difference is negligibly small and the values given here have only 
been chosen to be consistent with the present theory. 

 
D [m] Us [m/s] Cd g′ [m/s²] Fr K E 

11.6 0.49 0.0037 0.071 0.54 1.3 6.6·10-5 

Table 7.2: Bulk parameters for a density current north of Kriegers Flak. 19 hour
average of data observed from February 6 – 7, 2004. 
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Numerical simulations 

As can be seen from the depth contours in Figure 7.11 at the measurement station 
the density current is restricted to a quite narrow channel and it can be expected that 
three dimensional effects which are not regarded in the one dimensional model will 
affect the current dynamics. Indeed, as shown by Burchard et al. (2005) the current 
interface slopes towards Kriegers Flak with the core of salinity being displaced 
towards the north. Furthermore the channel is widening downstream of the station 
which for subcritical flow conditions could lead to a deceleration of the current as 
argued by Arneborg et al. (2007). Hence, the one-dimensional model used here is 
actually not applicable to this case where the current is influenced in lateral and 
transverse direction by the varying topography. However, the results presented by 
Arneborg et al. (2007) encourage the use of such a simple model if the slope of the 
interface is assumed to be parallel to the bottom slope. 

With the bottom drag coefficient and the Froude number given the slope in 
streamwise direction can be obtained from (7.49) which yields αm = 1.08 ‰ in 
accordance with the value used by Arneborg et al. (2007). From the Froude number 
and Ekman number the total slope can be obtained from (7.52) and is tan α = 1.36 ‰ 
such that the slope in cross-stream direction must be 0.83 ‰ which is slightly more 
than the values used by Arneborg et al. (2007). 

The numerical grid used for the present simulation is basically the same like that 
used in the previous sections with the density and velocity gradients within the 
interface resolved by Δz = 0.2 m. To realize the high observed bottom drag in the 
numerical simulation the bottom roughness has been chosen to be ks = 0.40 m which 
seems to be unrealistically large and will be discussed in more detail later. Anyway, 
for numerical reasons the grid at the bottom had to be modified such that the 
distance of the closest grid point to the wall is in the range of the bottom roughness. 
As before the simulation was started with box profiles for salinity and velocity. In 
order to give the current enough time to stabilize the initial depth was chosen to be 
D = 5 m with a reduced gravity of g′ = 0.164 m/s² corresponding to the observed 
total buoyancy of g′D = 0.82 m²/s². 
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The simulation was run for 7 days and after about 55.5 hours the current had reached 
the destination depth of 11.6 m. A comparison of the observed bulk parameters 
given in Table 7.2 with the results of the numerical simulation and the values 
predicted by the depth integrated theory is shown in Table 7.3. 

 
 Us [m/s] Cd Fr K E 

observed 0.49 0.0037 0.54 1.3 6.6·10-5 

simulation 0.48 0.0035 0.53 1.2 6.0·10-5 

theory 0.49 0.0037 0.54 1.3 7.1·10-5 

Table 7.3: Comparison of observed and modeled bulk parameters for a density
current with D = 11.6 m and g′ = 0.071.  

Except for a slightly higher entrainment rate the theory is in perfect agreement with 
the observed data. Although the comparison of the numerical model with the theory 
in the previous section showed almost perfect agreement, the results here are slightly 
different. The main reason for this deviation lies in the comparably large bottom 
roughness that had to be applied in order to realize the observed high bottom shear 
stress and the resulting entrainment rates. With increasing bottom roughness the 
numerically computed bottom drag coefficient becomes less reliable as can be seen 
from the slightly lower simulated value in Table 7.3. 

In fact the bottom roughness had been chosen in order to obtain the best agreement 
with the observed speed and Froude number of the current and the theoretical 
Froude Ekman number relation and entrainment rates. A comparison of the latter is 
shown in Figure 7.12 from which it is apparent that the numerical model needs some 
time before the results are in more or less perfect agreement with the theory. For 
Fr > 0.52 there are still some deviations explaining the different values given in 
Table 7.3. Interestingly, for Fr = 0.54 the numerically predicted entrainment rate 
corresponds exactly to the observed value of E = 6.6·10-5, which, however, might 
just be regarded as a coincident as the current speed and buoyancy are slightly 
different. Anyway, disregarding the slight model inconsistency in the bottom drag 
the overall agreement between the simulated and observed bulk parameters is very 
convincing and is even better than the results presented by Arneborg et al. (2007). 
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However, concerning the uncertainties in the measurements and assumptions that 
have been made for the present simulation a too detailed discussion about marginal 
deviations seems to be very academic, anyway. 

 
            Froude number vs. Ekman number           Entrainment rate 

Figure 7.12: Comparison between numerical and theoretical results for Froude 
Ekman number relation and entrainment rate vs. Froude number. 

For the sake of completeness Figure 7.13 shows vertical profiles of density anomaly, 
gradient Richardson number, velocities in streamwise and cross-stream direction, 
turbulence dissipation rate and buoyancy production over the lower 30 m of the total 
water depth. The thick lines represent the measurements averaged over the whole 19 
hour period and the numerical results shown by the thin lines correspond to the 
instant when the current depth has reached the target value of D = 11.6 m. The 
present results are very comparable to those presented by Arneborg et al. (2007) and 
the following discussion therefore basically follows the same arguments. 

The modeled density profile is in good agreement with the measurements and also 
the streamwise velocity profile conforms quite well with the observation although 
the numerical predicted maximum is slightly higher and the shear in the interface is 
somewhat larger. The modeled cross-stream velocity shows the typical form 
expected from Ekman theory while the observed profile has even a contrary shape. 
This can be attributed to the real topography which forces the current into a narrow 
channel, an effect that is disregarded in the one-dimensional numerical model. 
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      Density anomaly           Gradient Richardson number 

      Streamwise velocity           Cross-stream velocity 

         Turbulent dissipation rate         Buoyancy production 

Figure 7.13: Vertical profiles of D, Rig, u, v, ε and Gb. Field observations 
compared to numerical simulation results with tan α = 1.36 ‰. 
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The gradient Richardson number shows similar features in the simulation and the 
observation with an increase from zero at the bottom to a maximum value below the 
interface and a constant local minimum within the interface. The numerical model 
predicts the desired stationary value of Rig = 0.25 while the observed value is about 
Rig ≈ 0.7 which is significantly larger than the expected critical value and argued by 
Arneborg et al. (2007) with two points. First, it might be an effect of the vertical 
resolution of the velocity profile which is probably too coarse. Second, it could be 
an effect of intermittency with temporary very high values which are smeared out by 
the averaging process and are generally not regarded in the numerical model. 

The observed and modeled turbulent dissipation rates are also quite similar and 
show the expected steep increase towards the bottom, a local minimum where the 
gradient Richardson is at maximum and a further increase to a local maximum 
within the interface. However, while the quantitative agreement is quite satisfying in 
the bottom boundary layer with increasing distance from the bottom the 
measurements show significantly larger values than the numerical model. As pointed 
out by Arneborg et al. (2007) there is a significant uncertainty in the measured 
dissipation rate profile and if the last hours are excluded from the average there 
would be a perfect correspondence between simulation and observation. 

The turbulent dissipation rate can be regarded as a proxy for the production of 
turbulent kinetic energy and buoyancy. The profiles of the latter are compared in the 
lower right panel and indeed show the same pattern with a perfect agreement near 
the bottom and lower modeled values within the interface. Compared to the 
turbulent dissipation rate the absolute differences are much smaller and more locally 
restricted to the region of the interface. This explains the fair agreement between the 
observed and simulated entrainment rates rate which depend on the depth integrated 
bulk buoyancy production as defined by (7.58). 

This also shows that a large part of the total entrainment is governed by the bottom 
induced turbulence, at least as long as the Ekman number is larger than 1 as in the 
present case. Therefore it might be interesting to have a final look at the influence of 
bottom drag and bottom slope on the dynamics and entrainment rates of a density 
current. For this purpose four additional scenarios based on the above presented 
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setup have been investigated. The chosen bottom slope and the theoretical and actual 
bottom drag coefficients (as discussed above) are summarized in Table 7.4. 

 
 case 1 case 1a case 1b case 2 case 3 

tan α [‰] 1.36 1.36 1.36 0.74 1.84 

Cd, theoretical 3.7·10-3 2.0·10-3 5.0·10-3 2.0·10-3 5.0·10-3 

Cd, numerical 3.5·10-3 2.0·10-3 4.6·10-3 2.0·10-3 4.6·10-3 

Table 7.4: Definition of the five test cases to investigate the influence of bottom 
slope and bottom drag on the dynamics of a density current. 

Case 1 represents the above analyzed scenario and cases 1a and 1b have the same 
bottom slope but different bottom friction. In cases 2 and 3 both bottom slope and 
bottom drag coefficient have been changed but their ratio (tan α/Cd) is held constant 
in order to keep a fixed relation between Froude and Ekman number (cf. eq. (7.52), 
assuming sin α ≈ tan α). A first result concerning the performance of the numerical 
model can already be deduced from Table 7.4. For small bottom friction (ks < 0.1 m) 
the numerically predicted bottom drag exactly matches the theory while it is smaller 
for larger bottom roughness as already found above. The deviations increase with 
increasing bottom roughness but seem to be independent of the bottom slope 
(current speed) at least in the range chosen here. 

In order to cross-check with the results above the present simulations are evaluated 
when the current depth reached D = 11.6 m and the total buoyancy is g′ = 0.071 m/s2, 
accordingly. The respective vertical profiles of density anomaly, gradient 
Richardson number, velocities in streamwise and cross-stream direction, turbulence 
dissipation rate and buoyancy production are shown in Figure 7.14. Apparently, on a 
constant slope (cases 1, 1a and 1b) the bottom drag coefficient has only marginally 
influence on the depth structure of the current. As might have been expected from 
the momentum balance (7.46) the major differences are found in the streamwise 
velocity profiles which directly depend on the friction at the bottom. Although the 
streamwise velocities significantly differ this has obviously no effect on all other 
quantities as their profiles are almost identical. 
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      Density anomaly           Gradient Richardson number 

      Streamwise velocity           Cross-stream velocity 

         Turbulent dissipation rate         Buoyancy production 

Figure 7.14: Vertical profiles of Δρ, Rig, u, v, ε and Gb. Comparison of the five 
test cases to investigate influence of bottom drag and bottom slope. 
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However, actually this agreement is just a coincidence as the three different cases 
behave quite similar for about 5 days of entrainment and the destination depth is 
reached after about 2 days already. The profiles of the cross-stream velocity and the 
turbulent quantities yet indicate what will happen if the currents further evolve. Due 
to the Coriolis forces the different streamwise velocity profiles will induce different 
cross-stream velocities and due to the different drag at the bottom the turbulent 
dissipation rate and buoyancy production will be reduced and augmented, 
respectively. However, the differences are comparably small and the profiles for 
density and gradient Richardson number remain identical throughout indicating that 
the interface behaves proportional to the bottom slope rather than bottom drag. 

This is supported by cases 2 and 3 which have the same bottom drag coefficients 
like cases 1a and 1b, respectively, but different slopes. A comparison of the profiles 
of density and gradient Richardson number shows that the thickness of the interface 
decreases with decreasing bottom slope. Although the profiles of streamwise 
velocity for case 1 and case 3 are almost identical the turbulent dissipation rates and 
the resulting buoyancy production significantly differ with much higher values on 
the steeper slope. On the other hand, due to the shallow slope in case 2 the velocity 
is generally smaller, reducing the turbulent dissipation rate and buoyancy production 
and in consequence leading to very small entrainment rates. It can therefore be 
concluded that the bottom drag has a certain effect on the entrainment rates but the 
influence of the bottom slope (or at least a combination of both) seems to be much 
more significant. This becomes clearer from the bulk parameters given in Table 7.5. 

 
 case 1 case 1a case 1b case 2 case 3 

Fr 0.53 0.65 0.47 0.42 0.55 

K 1.19 0.82 1.42 0.55 1.68 

Us 0.48 0.58 0.43 0.38 0.50 

E 6.0·10-5 4.4·10-5 6.8·10-5 1.1·10-5 9.9·10-5 

Table 7.5: Bulk parameters for the five test cases when the current depth reached 
D = 11.6 m and g′ = 0.071. 
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A sole dependence of the entrainment rate on the Froude number as suggested by 
some entrainment laws is clearly not given, at least not for the subcritical flow 
conditions regarded here. A much better approach is to consider the bottom drag 
coefficient as e.g. in the law of Stigebrandt (1987) or the present law given by (7.62). 
However, as discussed in section 7.1.5 the dependence of the bulk flux Richardson 
number remains which can be expressed by (7.64) introducing the Ekman number. 
This dependence is clearly justified through Table 7.5 and can be interpreted 
physically by the assumption that for K < 1 the bottom induced turbulence will not 
reach the interface and overall mixing must be small. On the other hand with 
increasing Ekman numbers K > 1 bottom turbulence spreads over the current, 
increasing the interface thickness and entrainment rates. 

Finally, Figure 7.15 shows the entrainment rate versus Froude number comparing 
the results of the five test cases to measurements in the field and laboratory. In 
accordance to Figure 7.10 the measurements of Cenedese et al. (2004) and 
Baringer & Price (1997) have been included for reference and are represented by the 
open circles and triangles, respectively. The other symbols correspond to the 
numerical results and the lines show the theoretical solutions of the present theory. 
They have been added in order to extend the Froude number range and to once more 
approve the agreement of the numerical model with the depth integrated theory. 

Due to the different bottom slopes and drag coefficients there is a remarkable spread 
in the numerical data. Although most of the measured entrainment rates were found 
for higher Froude numbers the present numerical results seem to be a reasonable 
extension of the observed entrainment rates to lower Froude numbers. Comparing 
cases 1, 1a and 1b it can be seen that for a constant bottom slope the Froude number 
decreases and entrainment rates increase with increasing bottom drag. This might 
have been expected by intuition as a larger bottom shear stress retards the current 
while the Ekman number is augmented. Furthermore, it is analytically supported by 
the simplified entrainment law (7.70) which for a constant slope predicts an increase 
of entrainment by Cd

1.6. On the other hand for constant bottom drag (7.70) suggests a 
decrease of entrainment with increasing bottom slope also in accordance with the 
simulations comparing cases 1a and 2 or cases 1b and 3 at the same Froude number. 
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Figure 7.15: Entrainment rate versus Froude number. Results of the five test cases 
compared to different measurements. 

The theoretical upper limit of the Froude number as given by (7.53) is also found in 
the simulation data. The slightly higher values for cases 1 and 3 compared to case 2 
reflect the numerical underestimation of the bottom drag coefficient for large bottom 
roughness. To arrive in the higher Froude number range of the measurements the 
ratio of bottom slope and bottom drag coefficient must be in the order of 1 which is 
much higher than the values used in the present example. However, as indicated by 
the results of case 1a and suggested by the simplified entrainment law (7.70) the 
high entrainment rates of the measurements imply large bottom drag coefficients. 
Indeed, for the Mediterranean outflow where the mean bottom slope can be 
estimated by tan α ≈ 6 ‰, Baringer & Price (1997) found the bottom drag 
coefficient to be in the range of  2·10-3 < Cd < 12·10-3. Even though the large spread 
poses some questions on this estimate and at first these values seem to be 
unrealistically huge, they are definitely supported by the present theory.  
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However, as shown by the friction law of Darcy/Weisbach (7.33) and (7.32) such 
high bottom drag coefficients require in fact unrealistically high ‘physical’ bottom 
roughness which consequently led to the numerical problems mentioned above. 
Hence, much more the question arises whether the bottom drag coefficient should be 
interpreted as a result of the bottom roughness alone or if it should more generally 
be regarded as a proxy for the turbulence in the bottom boundary layer. What indeed 
speaks in favor of the latter is that in a density current convective overturns may 
appear in the bottom boundary layer (Moum et al. 2004) which induce additional 
turbulence. This could explain the high dissipation rates found in the current north of 
Kriegers Flak as argued by Arneborg et al. (2007) and furthermore it would be a 
good argumentation for the high bottom drag coefficients estimated by 
Baringer & Price (1997). In any case it remains still an assumption that has to be 
investigated more thoroughly in future work. 

7.2.5 Neglect of Coriolis forces 

Though the present numerical model has now been extensively validated against 
theory and field data all the cases regarded so far were influenced by earth rotation 
and the effect of the resulting Coriolis forces. This is justified in so far as the density 
currents in the Baltic Sea which are of major interest here underlie these effects in 
fact. However, in view of the forthcoming fundamental investigation of the 
influence of a circular cylinder on a density current it might be desirable to start with 
a more basic configuration without the effect of secondary currents induced by a 
rotating frame of reference. 

The next logical step is therefore to neglect the Coriolis forces and to regard purely 
two dimensional currents flowing straight down the hill. However, it turned out that 
it is not possible to achieve reasonable results with the one-dimensional model if the 
Coriolis factor is too small or even zero at the limit. The present section is therefore 
dedicated to a short analysis of the cause and effect of the rather unphysical behavior 
of the numerical model. For this purpose the simulations presented in section 7.2.1 
have been repeated but with the Coriolis terms switched off.  
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Figure 7.16 shows depth profiles of density difference, velocity, gradient Richardson 
number, turbulence production, turbulent diffusion and buoyancy production 5, 10 
and 15 hours after the beginning of the simulation. From the maximum values of 
density it is seen that obviously some amount of less saline water is entrained into 
the bottom layer as the density difference between the current and the ambient fluid 
is constantly reduced. However, compared to the profiles after about 24 hours shown 
in Figure 7.5 the reduction is much smaller which can be explained by the strange 
form of the interface found here. Apparently, the core of the current is more or less 
unchanged while the region above it is extensively mixed. From the profiles of 
velocity and gradient Richardson number it can be deduced that the mixed region is 
constantly growing and turbulence is in equilibrium (Rig = 0.25). However, even 
without Coriolis forces it should be expected that due to the stabilizing effect of 
stratification the interface will reach a quasi-stationary state just as those shown in 
Figure 7.5. In the present case the upper part of the current behaves more like a 
neutral jet and there is evidence that the interaction of the mean stratified and 
turbulent flow fields is unbalanced. 

Indeed the unphysical model behavior arises due to a wrong prediction of turbulence 
production and is an inherent problem for all models based on the turbulent 
viscosity/diffusion assumption. For these models the production of turbulent kinetic 
energy is proportional to the shear of the mean flow field (cf. eq. (3.49)) and if the 
current is purely two-dimensional there is no production in height of the velocity 
maximum as the only gradient in the flow field vanishes. The minimal turbulence 
production inevitably yields a minimum of turbulent viscosity and diffusion which 
in turn precludes mixing of momentum and salinity and consequently results in the 
unphysical peak in the velocity profile and the steep gradient in the density profile. 
Due to the latter the core of the current is somewhat protected against entrainment 
while the upper part becomes more susceptible to mixing. The currents with Coriolis 
forcing above show a similar behavior during the adjustment of the profiles from the 
initial box shape, but the maxima of streamwise and cross-stream velocity in the 
balanced state are found in different heights limiting the minimum of turbulence 
production to finite values. Thus there is no unphysical suppression of mixing, the 
profiles stabilize and the numerical model provides reasonable results. 



7 Natural density currents 

200 

         Density difference         Gradient Richardson number 

        Velocity         Turbulence production 

         Turbulent diffusion         Buoyancy production 

Figure 7.16: Simulation results for a density current without Coriolis forces. 
Vertical profiles of relevant quantities at different times. 
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One might argue that in a real current there is also a zero gradient in the mean 
velocity profile at the maximum and production of turbulence should vanish at this 
point leading to similar phenomena like above. However, while the first can be 
assumed to be more or less correct the conclusion is definitely wrong as there is 
evidence for currents without the effect of rotation to be stable. The reason is found 
in the nature of turbulence which is always a three dimensional process and in the 
case of stratified flows is not only produced by shear but also by breaking of internal 
waves. Simulations based on simple two-equation turbulence models like the one 
above must inevitably fail as the relevant processes are neither resolved nor 
adequately incorporated into the model assumptions. 

One way out of this dilemma could be the use of another turbulence closure which is 
not based on the turbulent viscosity/diffusivity assumption. LES for instance might 
be an excellent candidate as a great part of the turbulent scales are resolved by the 
numerical grid and there is justified hope that this will solve the problem of zero 
production at the velocity maximum. However, as already discussed before for the 
simulation of natural currents LES is still computationally too expensive and is 
limited to laboratory scales with smaller dimensions and lower Reynolds numbers. 

Another way to solve the problem could be found in a modification of the turbulence 
production term in analogy to the modification suggested by Kato & Launder (1993) 
for the flow around bluff bodies (cf. chapter 5.3) or the splitting of the buoyancy 
production term into the ordinary part and a portion going into internal waves as 
proposed by Baumert & Peters (2004). This approach however, was not further 
followed as it is supposed that the discrepancy of the model used for the present 
work only applies to undisturbed density currents which are of minor interest here. If 
the current is disturbed by a cylinder or any other obstacle additional shear will be 
induced and it can be assumed that the inherent drawback of the model is negligible 
in this case. Anyway, the singularity in turbulence production in an undisturbed 
density current without secondary flows puts a great challenge onto turbulence 
models based on the turbulent viscosity/diffusivity assumption and remains an open 
task for further research. 
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7.3 2-D/3-D modeling of natural density currents 

The one-dimensional setup used in the preceding chapter was ideally suited to 
validate the numerical model for the simulation of undisturbed density currents. 
However, the influence of a circular cylinder on these currents can only be simulated 
in a fully three-dimensional domain and it should first be shown that the model also 
works for this configuration. Furthermore it is hoped that the discrepancies of the 
applied two-equation turbulence models for simulating purely two-dimensional 
currents without Coriolis forces are tolerable in a finite channel with boundary 
conditions approximately matching the expected properties.  

In the one-dimensional model above no real boundary conditions in the horizontal 
domain exist and assuming the surface boundary conditions to be unimportant the 
solution of the problem only depends on the bottom boundary and initial conditions, 
as well as global settings like bottom slope and system rotation. In a two- or three-
dimensional channel, however, streamwise inflow and outflow conditions have to be 
applied which can have a significant effect on the final result. In the following 
simulations it has been tried to keep the along channel conditions as stationary and 
steady as possible. The corresponding inflow and outflow conditions will be 
discussed more detailed below. 

7.3.1 Model setup 

For the following tests a channel with a total length of L = 1000 m and a total depth 
of H = 40 m is regarded. As indicated by the title of this chapter the final goal is to 
show the validity of the model for fully three-dimensional simulations. With the 
chosen turbulence models here, however, there will be no lateral variations as long 
as the global conditions remain constant which is assumed here for simplicity. 
Hence, it is sufficient to demonstrate the model behavior for a two-dimensional 
model with only one grid cell in lateral direction as the results in the fully three-
dimensional case are identical. 

The numerical grid is similar to that used for the one-dimensional model above 
(cf. left panel in Figure 7.3) with a fine resolution near the bottom to resolve the 
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boundary layer, a constant resolution between 5 m < z < 15 m to account for the 
gradients in the interface and a coarser resolution towards the top where the stagnant 
ambient fluid has no specific requirements. Even if the computational requirements 
for the two-dimensional model here can still be easily handled, the grid has been 
tried to be chosen as coarse as possible in view of the much higher computational 
demands in the forthcoming fully three dimensional simulations. By several test runs 
it was found that for the present simulations a horizontal resolution of dx = 5 m and 
a vertical resolution of the interface of dz = 0.5 m is necessary and sufficient.  

As the simulations here serve as a first test for the fully three-dimensional 
simulations with a circular cylinder included it is useful to investigate boundary and 
global conditions that will also be used in the next chapter. In order to more or less 
reflect realistic conditions found in the Arkona basin the current depth is chosen to 
be D ≈ 10 m with a salinity difference of ΔS ≈ 10 PSU, a target current speed of 
about U ≈ 0.5 m/s and a resulting Froude number of Fr ≈ 0.57. The bottom slope is 
α = 1.06 ‰ and the bottom roughness has been set to ks = 0.025 m which is rather 
smooth compared to the discussion in the preceding chapter. However, at least it is 
supposed to reflect the natural roughness quite well and indeed is numerically more 
reliable as shown above. 

The inflow boundary is made up of Dirichlet conditions with fixed profiles for 
velocity, salinity and turbulent quantities making this boundary reflective. At the 
outflow boundary the current should leave the domain without reflection and 
velocity, salinity and turbulent quantities are treated by Neumann conditions. For 
numerical reasons a Neumann condition can not be used for pressure which has to 
be prescribed by a fixed profile. Assuming that the current depth does not change 
significantly over the channel length the excess pressure profile resulting from the 
current depth at the inlet has been used. At the top boundary also a pressure 
condition is applied but with zero excess pressure over the complete channel length. 
This allows fluid to enter the computational domain through the top in order to 
supply the mass deficit in the upper stagnant layer resulting from the entrainment of 
ambient fluid into the current. The rigid lid condition chosen for the one-
dimensional model above could be applied as well but then the overall mass balance 
requires fluid to enter through the outflow boundary inducing a backflow current in 
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the upper ambient fluid. Although the resulting velocities are very small and there is 
almost no difference in the overall results the pressure boundary condition has been 
chosen as it is felt that it better reflects the natural conditions. 

The simulations could either be started from scratch or with velocity, salinity, and 
turbulent fields approximately matching the final conditions. In both cases the 
current will need some time to adjust to the stationary state. However, with the latter 
choice the initial settling time can be significantly reduced and therefore the initial 
conditions are adopted from the inflow boundary. 

7.3.2 Density currents in a channel with Coriolis forces 

Like for the one-dimensional model above it is useful to start with a channel in a 
rotating frame of reference where the current underlies the effect of Coriolis forces. 
In this case the boundary (and initial) conditions can be gained from a preliminary 
run of the one-dimensional model which is evaluated when the current reached the 
target depth of 10 m. The lower 20 m of the corresponding vertical profiles for 
streamwise and cross-stream velocity, salinity, turbulent kinetic energy, specific 
dissipation rate and excess pressure are shown in Figure 7.17. 

Boundary conditions 

All profiles show the expected patterns that have been discussed in detail above. The 
pressure profile which was not regarded up to now also shows the expected behavior 
and linearly increases towards the bottom with the maximum value given by the 
hydrostatic balance pbot = ρ0·g′·D ≈ 770 N/m². Though within the interface the 
density difference and by that g′ decrease leading to a reduced gradient in the excess 
pressure observed between 8 m < z < 11 m, a pure linear functional relation could be 
assumed to be a good approximation. From the salinity profile the thickness of the 
interface can be estimated to be about 3 m justifying the chosen vertical resolution 
of the numerical grid with which the interface is resolved by 6 grid cells. The 
deflection of the current to the right is about 48 ° and in order to apply the velocities 
given in the upper left panel with zero volume flux in cross-stream direction the 
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channel is aligned in main flow direction such that the bottom slopes in streamwise 
and cross-stream direction are αm = 0.70  ‰ and αn = 0.78  ‰, respectively. 

         Velocity            Salinity 

         Turbulent quantities             Pressure 

Figure 7.17: Boundary conditions for a density current in a channel with Coriolis 
forces. 

Results 

The entrainment rate in the present case found from the one-dimensional simulation 
and suggested by the depth integrated theory is about E ≈ 3.2·10-5 with an 
entrainment velocity being only about half of that. The variations of the current 
along the channel can therefore assumed to be small and the vertical profiles given 
in Figure 7.17 which are imposed as boundary conditions indeed remain quasi 
identical over the whole length of the channel and are dispensable to be shown. 
Further support for the steadiness of the current is given by the along channel 
profiles of current depth, Froude number, volume flux and entrainment rate 
displayed in Figure 7.18.  
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            Current depth 

 
             Froude number 

 
           Volume flux 

 
            Entrainment rate 

 
Figure 7.18: Along channel profiles of current depth, Froude number, volume 

flux and entrainment rate for a density current with Coriolis forces. 
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As expected, the current depth and Froude number remain constant over almost the 
complete channel length with the strongest variations found at the inflow and 
outflow boundaries. The influence of the outflow boundary is most apparent from 
the volume flux which significantly decreases about 50 m in front of the end of the 
channel. This intense variation stems from the top pressure boundary condition that 
produces a short cut current and sucks water from the outflow boundary. Though the 
resulting velocities are actually quite small they remarkably alter the depth 
integrated volume flux. However, this erroneous effect on the current is restricted to 
a narrow region at the end of the channel and the overall results seem to be 
reasonable if the inflow and outflow area, say the first and last 50 m of the channel, 
are disregarded. 

The entrainment rate shown in the lower panel has been evaluated from the bulk 
buoyancy production as given by (7.58) and is in the expected order of magnitude of 
about E ≈ 3·10-5 implying an entrainment velocity of wE ≈ 1.5·10-5 m/s. In principle 
the latter could also be determined from the volume balance (7.6) which reduces in 
the present stationary streamwise oriented case to 

d
dE
UDw

x
= . (7.71)

The expected increase of volume flux over the whole channel length of 1000 m 
should therefore be about dUD = 1.5·10-5 m/s · 1000 m = 0.015 m²/s, which is 
relatively small but can indeed be estimated from Figure 7.18. However, due to 
these really small values a local evaluation of (7.71) requires a very precise 
determination of the volume flux which is notably precluded from the present data 
as can be seen from the along channel profile shown in the second panel from below. 
Anyway, the overall balances are obviously satisfied and a prediction of the local 
entrainment rate can be reliably gained from (7.58).  

Without doubt the numerical model can be regarded as validated for the simulation 
of an undisturbed density current in a channel with Coriolis forces and is clearly 
suited for the investigation of the influence of a circular cylinder on these currents in 
the next chapter. However, as already mentioned above for an analysis of the 
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fundamental effects it is desirable to start with a simplified configuration and 
disregard the secondary currents in cross-stream direction induced by a rotating 
frame of reference. Therefore, first the model performance for simulating density 
currents in a channel without Coriolis forces will be demonstrated in the next section. 

7.3.3 Density currents in a channel without Coriolis forces 

As shown in chapter 7.2.5 the simulation of a density current without Coriolis forces 
using two-equation turbulence models, like here, suffers from an underestimation of 
turbulence production at the velocity maximum. If the current is left to freely evolve 
as in the one-dimensional model above this model failure will produce unphysical 
results and a prediction of the current dynamics and entrainment is actually not 
possible. In a finite channel the singularity in turbulence production is still present 
but its effect is less severe since the current dynamics are also governed by the 
inflow and outflow boundary conditions like in the case with Coriolis forces above. 
However, unlike in the case above, here it is unfeasible to generate boundary 
conditions by a preliminary one-dimensional simulation. Thus, these have rather to 
be provided by theoretical considerations. 

Boundary conditions 

The mean velocity and salinity (density) profiles within the interface are estimated 
to be of hyperbolic shape as suggested by experimental evidence (e.g. Thorpe (1987)) 
and assumed in many other numerical simulations on stratified shear layers 
(e.g. Caulfield & Peltier (1994, 2000), Cortesi et al. (1998, 1999)). In terms of the 
local vertical coordinate z′ the profiles for velocity and salinity read 

( )min
1 2( ) tanh 3 / tanh 3 1        for   
2 2 2

zu z u u zδ δ
δ
′⎛ ⎞⎛ ⎞′ ′= + − + Δ − < <⎜ ⎟⎜ ⎟
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, (7.73)

where δ is the thickness of the interface given by 
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Below the interface from z = 0 to z = D − δ/2 salinity is assumed to be constant and 
a logarithmic velocity profile as described in chapter 3.8 is applied. While the 
salinity difference ΔS is explicitly given the velocity difference Δu must be found in 
an iterative process until the depth integrated velocity corresponds to the target value. 

Turbulent kinetic energy and specific dissipation rate are also determined from the 
definitions made for the turbulent logarithmic boundary layer in chapter 3.8. 
Turbulent kinetic energy is assumed to linearly decrease from its maximum value at 
the bottom given by (3.153) to a minimum value kmin = 10-6 m²/s² at z = D which has 
been chosen in order to provide at least little initial turbulence within the interface:  
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The friction velocity uτ is given by the logarithmic velocity profile and cµ = 0.09. 
The specific dissipation rate in the logarithmic boundary layer is given by (3.173) 
and within the interface a maximum constant value of ωmax = 1.0 is assumed as 
suggested by the simulations above (cf. lower left panel in Figure 7.17): 
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where κ = 0.4 is the von Kármán constant and  uτ and cµ are defined above. 

Finally, the hydrostatic excess pressure needed for the outflow boundary condition 
can be either obtained by integrating the density profile or assuming a linear increase 
from Δρ·g·D = ρ0·g′·D at the bottom to 0 at z = D. Both alternatives yield very 
similar results but the former has been chosen here for consistency. The according 
profiles are shown in Figure 7.19. 
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         Velocity            Salinity 

         Turbulent quantities             Pressure 

Figure 7.19: Boundary conditions for a density current in a channel without 
Coriolis forces. 

Results 

It is supposed that the boundary conditions approximately match the final solution 
and therefore the profiles will not change very much over the channel length. To 
verify this assumption the simulation has been run for 5000 s until the current passed 
the channel about 2.5 times such that all initial disturbances disappeared and 
stationary and steady conditions have established. The corresponding profiles of 
velocity, salinity, gradient Richardson number, buoyancy production, turbulent 
kinetic energy and specific dissipation rate at the beginning (x = 0 m), in the middle 
(x = 500 m)  and near the end of the channel (x = 990 m) are shown in Figure 7.20. 

From the profiles of velocity and salinity in the upper panels it is seen that the 
current indeed only marginally changes with the differences in salinity being even 
quasi undistinguishable. 
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         Velocity            Salinity 

         Gradient Richardson number             Buoyancy production 

         Turbulent kinetic energy             Specific dissipation rate 

Figure 7.20: Vertical profiles of various quantities at the beginning, the middle 
and near the end of the channel for a density current without Coriolis 
forces. 
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The velocity profiles indicate a slight thickening of the interface which can also be 
deduced from the gradient Richardson number in the middle left panel. There it is 
further seen that the preset value of Rig = 0.25 is exactly matched at the inlet but is 
slightly higher at the other stations signifying some imbalance in turbulence 
(cf. chapter 6.1.5). This might have been expected from the difficulties in turbulence 
production which are reflected by the profiles of buoyancy production and turbulent 
kinetic energy in the middle right and lower left panels, respectively. 

Buoyancy production at the inlet is restricted to the interface because of the zero 
density gradient which has been assumed in the core of the current (see boundary 
conditions above). As the current travels down the channel a density gradient 
establishes due to entrainment. Buoyancy production in the core shows the expected 
increase from the bottom which is a stable condition up to the end of the channel. 
However, at the middle station which is representative for the whole center part of 
the channel the minimum peak in buoyancy production and turbulent kinetic energy 
within the interface visualizes the erroneous turbulence production. Unlike in the 
one-dimensional model above this has no significant influence on the overall current 
dynamics due to the finite length of the channel but it can be expected that 
entrainment rates based on the integrated bulk buoyancy production will be 
underestimated. 

The minimum peak is present throughout the major part of the channel but 
interestingly it disappears near the end. This is due to the actually unwanted short 
cut current at the outlet (see previous section) which induces additional shear such 
that the production terms stabilize. Even though this effect is spurious in the present 
case it approves that the turbulence model is well suited for situations in which shear 
is not restricted to only one dimension. For the following simulations of density 
currents in a channel with a cylinder it can be supposed that the numerical model 
will provide reasonable results due to the additional shear in the wake induced by 
the eddies separating from the cylinder. 

Before continuing further, however, it is worth to have a look at the along channel 
profiles of depth integrated quantities given in Figure 7.21 to approve the steadiness 
of the current in the center part of the channel and show the effects at the boundaries. 
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            Current depth 
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Figure 7.21: Along channel profiles for a density current without Coriolis forces. 
Current depth, Froude number, volume flux and entrainment rate. 
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Like in the simulations with Coriolis forces above, the current depth and Froude 
number remain constant over a large part of the channel and the strongest variations 
are found at the inflow and outflow boundaries. Especially at the inlet the deviations 
from the steady state are most significant and much stronger than those to be 
observed in Figure 7.18. This could be expected as the inflow boundary conditions 
here were only guessed and the current adjusts to the quasi-equilibrium state over 
about the first 200 m (cf. the discussion about the vertical profiles in Figure 7.20).  

The strong transformation in the inflow region is associated with large entrainment 
rates as can be seen from the bottom panel in Figure 7.21 where entrainment within 
the first 100 m is even beyond the displayed range. The volume flux is qualitatively 
consistent with the entrainment rates and shows a large increase in the inflow region. 
However, in the center part of the channel, say between 100 m and 900 m the 
entrainment rate deduced from the volume flux is about E ≈ 5·10-5 and hence almost 
twice of that based on the bulk buoyancy production. 

Compared to the entrainment rate found for the current with Coriolis forces above 
(E ≈ 3·10-5) for the present case without Coriolis forces the entrainment rate can be 
assumed to be higher following the argumentation by Stigebrandt (1985) already 
mentioned at the end of section 7.1.5. Thus, the entrainment rate shown in the 
bottom panel of Figure 7.21 is obviously underestimated which might have been 
expected from the unphysical minimum in buoyancy production below the interface 
(cf. Figure 7.20). 

Summing up it can be concluded that in principle density currents in a channel 
without Coriolis forces can be simulated with the present numerical model. The 
mean flow field is quasi not affected by the discrepancy of the turbulence model and 
the results seem to be reasonable although a local determination of the entrainment 
rate is precluded by the erroneous prediction of turbulent quantities near the 
interface. However, entrainment in undisturbed density currents is only of minor 
interest here and it can be assumed that for the flow around a cylinder this drawback 
disappears due to the presence of secondary currents in the wake. 
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7.3.4 Concluding remarks 

The present chapter was concerned with the theoretical and numerical prediction of 
undisturbed natural density currents. By a comparison with theoretical results and 
field measurements the numerical model could be shown to provide reasonable 
results at least in situations where Coriolis forces are present. As well as the theory 
breaks down for large Ekman numbers the numerical model coincidently fails if 
Coriolis force become small or even vanish. For two-equation turbulence models as 
used here the resulting velocity profile yields a singularity in turbulence production 
which inevitably leads to an erroneous prediction of the overall current dynamics.  

In a one-dimensional model where only the vertical domain is resolved and the 
current is left to freely evolve the discrepancies of the turbulence model provide 
completely unphysical results for the evolution of a density current without Coriolis 
forces. However, in a two- or three-dimensional channel of finite size though the 
singularity in turbulence production is still present its effect on the mean flow field 
is less severe as the current is restricted by the inflow and outflow boundary 
conditions. 

Despite the drawback in turbulence modeling it can thus be assumed that the 
following investigations of additional entrainment induced by circular cylinders can 
be promptly carried out with the present numerical model even if Coriolis forces and 
the resulting secondary currents are neglected. It can well be expected that the 
simulations will provide reliable results not only due to the finite channel length but 
much more because the flow around the cylinder induces secondary currents which 
inhibit the singularity in turbulence production at least for the most relevant part in 
the wake. Therefore the entrainment rates can be locally evaluated based on the bulk 
buoyancy production permitting a basic investigation of the influence of circular 
cylinders on mixing and entrainment of density currents to be followed now. 
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8 Entrainment induced by a circular cylinder 

The preceding three chapters were dedicated to the discussion of the individual 
aspects and present knowledge about the flow around a circular cylinder and mixing 
and entrainment in stratified fluids like density currents. The influence of structures 
on these currents, however, is still an unresolved problem1 and poses the major issue 
of the present thesis which will be worked out now by means of detailed numerical 
simulations. 

Due to the lack of measurement data for the flow of density currents around a 
cylindrical structure the numerical model to be used here had to be validated for 
each of the involved processes separately. Unstratified flow around a circular 
cylinder was investigated in chapter 5.3, mixing in a stratified fluid in chapter 6.3 
and finally entrainment in undisturbed natural density currents in chapter 7.2 and 
chapter 7.3. It could be shown that the specific features of the individual flows are 
well predicted by the model which is therefore assumed to be equally suited for the 
following simulations where all processes are combined. However, a validation of 
the model against measurements of the actual flow configuration either in the 
laboratory or in the field would gain final confidence in the results presented in the 
following and remains an open task for future work. 

8.1 Methodology 

As mentioned in the introduction in chapter 1.2 the present work is motivated by the 
intended construction of offshore wind energy devices in the Baltic Sea and the 
interest to determine the induced dilution of density currents passing these structures. 
All simulations here were therefore made on a 1:1 natural scale with velocities, 

                                                                 

1 To the author’s knowledge the laboratory experiments of Jürgensen (1989) motivated by the 
planning of the Great Belt bridge are the only investigation on entrainment introduced by 
piers. However, his analysis based on overall budgets was rather crude and the results 
showed such a huge spread that the problem is basically regarded to be unresolved by now.  
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salinities and length scales varied in a realistic range representative for density 
currents in the Baltic Sea and possible foundations of the wind energy devices. 
However, in order for the results to be of general matter and to be applicable to other 
situations on different scales, it is useful to define the governing parameters of the 
flow and to express the results in terms of non-dimensional quantities. 

In chapter 7 it was shown that for undisturbed density currents the densimetric 
Froude number is the governing parameter for mixing and entrainment (see e.g. 
Figure 7.10 or Figure 7.15). Even if other parameters like bottom drag, bottom slope 
and Ekman number, respectively, might have a certain influence on entrainment 
rates (at least for undisturbed currents) the Froude number turns out to be the most 
important and is therefore assumed to be also a governing parameter for the present 
flow of a density current around a circular cylinder. 

The flow around the cylinder was found to be governed by the cylinder Reynolds 
number (cf. chapter 5.1) which in the present natural scale is usually in the order of 
106 even if it slightly varies along the cylinder span due to the shape of the incoming 
velocity profile. Following the discussion in chapter 5.1 it can be assumed that a 
variation of the Reynolds number in this order of magnitude will only have a minor 
influence on the flow field around the cylinder as it is always in the supercritical to 
post-critical Transition-in-Boundary-Layers regime (cf. Table 5.1). However, in 
general the Reynolds number can be expected to have a certain influence on the 
results and therefore it has been chosen as the second governing parameter. In the 
present context it will only be used to approve the above assumption that the 
Reynolds number has more or less no effect on the flow topology and entrainment 
rates as long as there is no significant change in the flow regime. 

Much more important than the Reynolds number might be the ratio between the 
current depth and cylinder diameter as the mean flow field behind the cylinder is 
governed by large three-dimensional vortical structures leading to strong advective 
transport in vertical direction which is a potential source for entrainment. For small 
aspect ratios, say D/d = 1, the vortices span over the whole current depth carrying 
fluid from the interface to the bottom and vice versa. This can be expected to be in 
association with rather large entrainment rates in contrast to situations with large 
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aspect ratios, say D/d = 10, where coherent structures in the wake are of size of the 
interface and mixing is restricted to the upper part of the current only leading to 
comparably smaller entrainment rates. The ratio of current depth to cylinder 
diameter is chosen as the third governing parameter for the present investigation and 
as explained above it is expected that its effect on the flow topology and entrainment 
is stronger than that of the Reynolds number due to the natural scale. 

Although density currents in the Baltic Sea are influenced by Coriolis forces as 
shown in chapter 7 it is desirable for the investigations on cylinder induced 
entrainment to neglect this effect at first. The secondary currents due to Coriolis 
forces would complicate the flow field behind the cylinder and hamper the 
interpretation of the results. Their neglect facilitates the analysis and furthermore 
improves the significance of the results for cases in which rotation plays no role − 
whatever these cases might be. Thus, Coriolis forces will be regarded only briefly at 
the end of this chapter and the basic analysis to be followed is focused on purely 
two-dimensional incoming currents. 

The major goal is to analyze the flow field around the cylinder and to quantify the 
additional entrainment induced by the structure. For this purpose fully three-
dimensional simulations were carried out in which the governing parameters were 
varied in order to identify their influence on the results. Although the configuration 
of the whole problem is rather simple the computational costs are very extensive due 
to the required resolution of the numerical grid which will be described in the next 
section. Even if only the three major parameters above (Fr, Re, D/d) are regarded it 
is impossible to cover the full range of combinations, owing to the immense effort 
for one single simulation. It has been tried instead to focus on only a few cases 
which allow for an extension to a more general interpretation. As it is the first time 
that mixing of density currents due to cylindrical structures is investigated in detail 
the present work should not be understood as being complete but much more as 
showing the way how to get access to the problem, giving first quantitative results 
and providing suggestions for future work. 

As mentioned above the governing parameters are varied in a range representative 
for density currents in the Baltic Sea being disturbed by the foundations of wind 
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energy devices. All currents investigated here are subcritical with the Froude 
number being less than 1. This is not only realistic for the currents in the Baltic Sea 
but much more the inherent entrainment of subcritical currents is comparably small 
(cf. chapter 7.1.5) and it can be assumed that the additional entrainment induced by a 
structure is much more significant for these currents than for supercritical ones. 
However, the proof for this assumption could be a task for future research. 

The individual parameters of all cases are compiled in Table 8.1 where the first three 
columns show the dimensionless governing parameters and the actual dimensional 
quantities that have been used are found in the last four columns. 

 
case Fr Re D/d ΔS [PSU] Us [m/s] D [m] d [m] 

1111 0.57 1.0·106 2 1.6 0.20 10 5 

1121 0.57 2.5·106 2 10.0 0.50 10 5 

1131 0.57 4.0·106 2 25.5 0.80 10 5 

2121 0.92 2.5·106 2 3.9 0.50 10 5 

2131 0.92 4.0·106 2 10.0 0.80 10 5 

3111 0.36 1.0·106 2 4.1 0.20 10 5 

3121 0.36 2.5·106 2 25.5 0.50 10 5 

1212 0.57 0.2·106 10 1.6 0.20 10 1 

1222 0.57 0.5·106 10 10.0 0.50 10 1 

1232 0.57 0.8·106 10 25.5 0.80 10 1 

1313 0.57 2.0·106 1 1.6 0.20 10 10 

1323 0.57 5.0·106 1 10.0 0.50 10 10 

1112  0.57 0.2·106 2 10.0 0.22 2 1 

1133 0.57 7.0·106 2 10.0 0.70 20 10 

Table 8.1: Parameters of the 14 test cases for the basic analysis of additional 
entrainment in density currents induced by a circular cylinder. 

The naming of the cases was chosen with the intention to more easily identify the 
specific issues of a case. The first index corresponds to the Froude number, the 
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second index to the current depth to cylinder diameter ratio, the third index to the 
current speed and the last index to the cylinder diameter both making up the 
Reynolds number.  

From the discussion of the measurements in the Arkona basin in chapter 7.2.4 it can 
be deduced that case 1121 corresponds most closely to these conditions. It will 
therefore serve as the case of reference which will be discussed in most detail in 
section 8.3.1 and the influence of the governing parameters will be shown by a 
comparison with the other cases afterwards. Most cases are based on a current depth 
of D = 10 m and the variation of Froude and Reynolds number was achieved by 
adjusting the salinity difference and speed of the current. By that the first seven 
cases are focused on the effect of Froude and Reynolds number at a constant 
cylinder diameter of d = 5 m. 

The next five cases 12xx and 13xx have been defined to investigate the effect of 
current depth to cylinder diameter ratio using the same currents as in cases 11xx and 
changing only the diameter of the cylinder by scaling the actual (dimensional) 
horizontal domain size while keeping the vertical size. The last two cases were 
added to prove that the different behavior found for cases 12xx and 13xx are really 
an effect of depth to diameter ratio and not of the Reynolds number. For this purpose 
the whole (dimensional) domain has been scaled such that both cylinder diameter 
and current depth were changed accordingly. While length scales linearly change 
with the scaling ratio velocities change with the square root of the scaling ratio 
leading to the slightly different values than in the other cases.  

As seen from Table 8.1 much effort was put on the variation of the Reynolds 
number which later turned out to be in fact rather insignificant for the present order 
of magnitude, as will be shown later. For this reason the analysis here is actually not 
complete and the simulations for D/d = 1 and D/d = 10 should also be made with 
Fr = 0.36 and Fr = 0.92, respectively, to round up the work. It might also be 
desirable to accomplish the data with another depth to diameter ratio, say D/d = 5, in 
order to provide even more confidence in the interpretation of the presented results. 
However, these additional simulations could not be made within the schedule of the 
present thesis and are left as an open task for future work. 
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Unless not otherwise mentioned all results shown in the next sections are presented 
in normalized quantities. Following the procedure in chapter 5.3 length scales are 
normalized by the cylinder diameter d and expressed as capital letters (cf. eq. (5.15)), 
the only exception being in the presentation of the model setup in the next section 
where the vertical scale is normalized by the current depth. According to this course 
of action velocities are scaled by the current speed Us just as in the definition of the 
entrainment rate (7.38) and time scales are normalized by d/Us. 

The normalized time step for all simulations was Δt = 0.04, which means that the 
complete domain (to be shown in the next section) is passed within 2000 time steps. 
In order to obtain quasi-stationary conditions with initial disturbances vanished all 
simulations were run for 4000 time steps initially. Subsequently, over another 4000 
time steps which corresponds to about 30 shedding cycles mean values for all flow 
quantities including turbulent fluxes were gained. Due to the relatively high 
Reynolds numbers for most of the cases the directly simulated periodic motion is 
rather small and most of it falls within the turbulence modeling. Therefore the 
averaging time might have been taken smaller, but was chosen to cover 30 cycles in 
order to gain more confidence into the statistics. 

In chapter 5.2.3 it was shown that the flow field around a bluff body can be 
decomposed into three portions, a global mean, a fluctuating turbulent and a 
fluctuating periodic part. From (5.14) it can be seen that on average momentum is 
mixed by both turbulent fluxes and fluxes due to the periodic motions. The same 
applies to the mixing of transported quantities like salinity or the resulting density 
field. Therefore the buoyancy production term which is needed to determine the 
entrainment rate can be decomposed into a turbulent and periodic fluctuating part:  

G G G′= + � , (8.1)

where 
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is the production of buoyancy by random fluctuations and 
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denotes the periodic part. Note that the overbar has been omitted on the left hand 
side for simplicity as all quantities here are time averaged values and an extra 
indication is unnecessary. According to the decomposition of the local buoyancy 
production the bulk buoyancy production given by (7.30) can be written as 
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and the entrainment rate given by (7.38) is redefined as 
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The same procedure can be applied to the production of turbulent kinetic energy  
and the corresponding depth integrated bulk production which can then be used to 
obtain the bulk flux Richardson number as given by (7.59). 

The following analysis of the simulation results will be started with a detailed 
analysis of the mean flow field around the cylinder which is responsible for the 
advective transport of salinity (density) to levels at which it is mixed with the 
surrounding fluid. The amount and efficiency of mixing will then be quantified by 
an analysis of the local entrainment rates and bulk flux Richardson numbers as 
defined above. As mentioned before this procedure is followed in detail for case 
1121 which corresponds most to the actual situation in the Arkona Basin and will 
serve as a reference for the succeeding less extensive comparison with the other 
cases in order to work out the effects of the governing parameters. Finally it will be 
tried to assess the total entrainment induced by the cylinder and to estimate its 
dependence on the governing parameters based on the available simulation data. 
These results could then be used for a parameterization of global models or as a rule 
of thumb for preliminary planning of offshore wind energy devices in the Baltic Sea. 
First, however, the computational grid and the specific boundary conditions used for 
the simulations should be addressed. 
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8.2 Model setup 

All simulations were carried out on the same computational domain which is 
sketched in Figure 8.1 with the cylinder in the center. The shaded plane is the result 
of one simulation and denotes the current depth which has been added to better 
visualize the model setup. Horizontal length scales are normalized by the cylinder 
diameter and the vertical scale is normalized by the current depth. The coordinate 
system is placed on the bottom in the center of the cylinder with the z-axis pointing 
vertically upwards, the x-axis pointing in streamwise direction and the y-axis 
pointing to the left. 

       

 
Figure 8.1: Definition sketch of the computational domain with the cylinder in 

the center. Boundary conditions are assigned by the text and current 
depth indicated by the shaded plane.  

The vertical extent of z/D = 4 was motivated by the simulations in chapters 7.2 and 
7.3 as it reflects the actual situation in the Arkona Basin with a total depth of about 
40 m and current depth of about 10 m. A more confined extent, say z/D = 2, would 
not have changed the results, but due to the successively coarser grid above the 
current (see below) the computational savings by that reduction are only small and 
the present extent was kept for consistency. In lateral direction the size of the 
domain is y/d = ±20 which is assumed to be more than sufficient for the cylinder 
flow not to be influenced by the lateral boundaries (cf. chapter 5). The domain size 
in streamwise direction is x/d = ±40 where the extent behind the cylinder is assumed 
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to be enough to capture the most active part of the wake and the extent in front of 
the cylinder is so large in order to give the incoming undisturbed current sufficient 
space not to be influenced by always imperfect boundary conditions (cf. chapter 7.3). 

The boundary conditions correspond basically to those used for the simulation of 
undisturbed density currents in a channel in chapter 7.3.1. The major difference 
comes from the new lateral boundaries at which periodic conditions are applied. 
Like for the top boundary also here symmetry (slip) conditions could have been 
chosen without significantly changing the results at least for purely two-dimensional 
currents. However, if Coriolis forces are regarded the resulting secondary flow in 
y-direction can only be realized with periodic conditions which have then always 
been used even if they are not the only alternative in cases without Coriolis forces. 

The profiles for velocity, salinity, turbulent quantities and pressure needed for the 
inflow and outflow boundary conditions as well as initial conditions were gained 
from preliminary simulations of undisturbed currents. Just as in chapter 7.3.2 for 
currents with Coriolis forces a one-dimensional model has been used to obtain the 
corresponding profiles. In cases without Coriolis forces, however, this is not 
possible for reasons mentioned above and the boundary profiles were gained from 
simulations in a two-dimensional channel as shown in chapter 7.3.3. 

The bottom roughness is always set to ks = 0.025 m corresponding to a drag 
coefficient of Cd ≈ 0.0022 for all cases where D ≥ 10 m. The slope of the channel is 
then found from the definition of the Froude number (7.49) with tan αm = 0.72 ‰ for 
Fr = 0.57, tan αm = 0.28 ‰ for Fr = 0.36 and tan αm = 1.85 ‰ for Fr = 0.92. Please 
note that these slopes correspond to the inclination in streamwise direction which is 
identical to the total slope of the channel for currents without Coriolis forces. If 
Coriolis forces will be regarded later the channel must also be tilted in lateral 
direction and the respective slopes can be determined from the total slope given by 
the Ekman number (7.50), Froude-Ekman number relation (7.52) and the angle of 
deflection which can be determined from (7.51). 

While the (normalized) size of the computational domain is the same for all cases 
the grid resolution had to be adjusted somehow to account for the peculiarities of the 
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individual cases. The grid is block-structured and the basic resolution is based on the 
experiences gained with the validation of the numerical model in chapters 5 and 7. 
The combination of a density current flowing around a cylinder requires a high 
resolution in both vertical as well as horizontal domain such that the whole problem 
demands a high computational effort especially because the horizontal domain size 
must be large for reasons mentioned above. The total number of grid cells Ntot, the 
number cells in the vertical Nz and the normalized minimum grid sizes at the 
cylinder Δrmin and within the interface Δzint are compiled in Table 8.2. 

 
case Fr D/d Ntot Nz Δrmin Δzint 

11xx 0.57 2 338192 47 5.0·10-4 0.050 

21xx 0.92 2 338192 47 5.0·10-4 0.050 

31xx 0.36 2 507288 70 5.0·10-4 0.025  

12xx 0.57 10 299920 47 2.5·10-3 0.050 

13xx 0.57 1 358800 47 2.5·10-4 0.050 

Table 8.2: Grid characteristics for the different test cases. 

In the vertical it is necessary to adequately resolve the steep gradients of velocity 
and turbulence quantities in the bottom boundary layer and of velocities and salinity 
(density) in the interface. In the range 0.5 < z/D < 1.5 the resolution of the latter in 
terms of current depth was chosen to be Δzint = 0.05 corresponding to 0.5 m for a 
current depth of 10 m which was found to be sufficient for the simulations in 
chapter 7.3. However, the thickness of the interface decreases with decreasing 
Froude number and the resolution has been doubled for the lowest Froude number 
investigated here to account for this effect. 

The horizontal grid topology is the same for all cases and adopted from that used in 
chapter 5.3 for the simulations of unstratified flow around a circular cylinder. The 
grid is circular up to 3 diameters around the cylinder and then converted over the 
next 3 diameters to the rectangular shape of the channel. The finest resolution at the 
cylinder Δrmin as given in Table 8.2 corresponds to the wall function approach with 
y+ being in the order of 102 or slightly below (cf. chapter 5.3.2). To reduce the 
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computational effort the resolution in the far field has been chosen much coarser 
with Δx/d = Δy/d = 1 which is slightly condensed in the wake region. Figure 8.2 
shows a side and top view of the complete numerical grid with details at the bottom 
and cylinder displayed in the small panels. 

            side view 

           top view 

Figure 8.2: Side view and top view of the numerical grid. Small panels showing 
the refined resolution at the bottom and cylinder, respectively. 
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8.3 Results 

As illustrated at the end of section 8.1 the analysis of the simulation results will 
focus on the mean flow field, entrainment rates and flux Richardson number. It will 
be started with a detailed discussion of the individual flow features for case 1121 
which is assumed to most realistically reflect a typical situation in the Arkona Basin 
(cf. Table 8.1). An evaluation of depth profiles at specific single points in the current 
as always done before seems to be inappropriate here, due to the three-dimensional 
nature of the flow field behind the cylinder. The present analysis is thus based on the 
discussion of the individual quantities within specific longitudinal and cross-sections 
as this view is supposed to provide a better insight into the flow characteristics. 
entrainment rates and efficiency of mixing given by the bulk flux Richardson 
number are depth integrated quantities which will also be analyzed globally within 
the whole flow plane. After the influence of the governing parameters has worked 
out by a comparison of individual features the integration of the entrainment rate 
over the flow plane will finally provide an estimate of the total amount of additional 
mixing induced by a circular cylinder. These values can then be plotted in terms of 
the governing parameters to provide a kind of entrainment law for this specific flow. 

8.3.1 Case of reference 

The following discussion of a current with Fr = 0.57, Re = 2.5·106 and D/d = 2 is 
intended to introduce the peculiarities of the flow and to provide a reference for the 
succeeding analysis of the influence of the governing parameters. To get a general 
feeling for the effect of the cylinder on the density current it is useful to have a look 
at the distribution of the density (salinity) field and the buoyancy production as a 
measure for mixing intensity. For this purpose Figure 8.3 shows a contour plot of 
(dimensional) buoyancy production in four different longitudinal sections in the 
vicinity of the cylinder at Y = 0, Y = 0.5, Y = 1 and Y = 5. The contour lines mark 
salinity concentrations at 0.5 %, 25 %, 50 % , 75 % and 99.5 % of the complete 
salinity difference and indicate the interface. The time averaged flow around the 
cylinder is symmetric and the sections shown here are identical to those for the 
corresponding negative values of Y. 
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 Y = 0                                                          log(-G) [m²/s³] 

 
 Y = 0.5                                                       log(-G) [m²/s³] 

 
 Y = 1                                                          log(-G) [m²/s³] 

 
 Y = 5                                                          log(-G) [m²/s³] 

 
Figure 8.3: Salinity and buoyancy production at different longitudinal sections 

for the reference case with Fr = 0.57, Re = 2.5·106, D/d = 2. Contour 
lines indicating salinities at 0.5 %, 25 %, 50 %, 75 % and 99.5 % of 
ΔS. Buoyancy production is given in logarithmic format. 
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In the bottom panel at Y = 5 buoyancy production and density field are both constant 
over the whole length of the section and more or less no disturbance of the current is 
detectable. This indicates that the influence of the cylinder on the current is 
restricted to the very near field of the structure (at least in lateral direction) and 
moreover it allows for using this section as a reference. From the contour lines of 
salinity the vertical structure of the interface can be detected to be of the typical 
hyperbolic form as found for undisturbed currents in chapters 7.2 and 7.3. The large 
density gradients in the core of the interface as reflected by the small distances 
behind the contour lines at 25 %, 50 % and 75 % ΔS indicate strong stability against 
local mixing while the upper and lower part where stratification is weak can be 
assumed to be more susceptible to mixing. From the distance of the outer contour 
lines the thickness of the interface can be estimated to be about 0.6d corresponding 
to 3 m for the present case which is consistent with the findings in chapter 7.3 for a 
similar undisturbed current. 

Also the buoyancy production shows the expected behavior with an increase from 
the bottom to a maximum value of G ≈ 10-6 m2/s3 at the lower part of the interface 
and a decrease within the interface which, however, is presumably not very well 
predicted due to the inconsistency of the turbulence model discussed in chapter 7.2.5. 
However, as argued there, this discrepancy of the model can be assumed to be 
unimportant in the wake of the cylinder where secondary currents prevent a 
singularity in turbulence production. Much more these currents produce a significant 
amount of additional turbulence in the wake region which is the source for increased 
mixing as reflected by the high buoyancy production rates behind the cylinder found 
in the sections at Y = 0, Y = 0.5 and Y = 1. 

The spatial evolution of buoyancy production along these sections shows that after 
20 diameters behind the cylinder the undisturbed profile as given in the lower panel 
at Y = 5 is almost completely recovered suggesting that the effect of the cylinder on 
entrainment is restricted to only a few diameters also in streamwise direction. This is 
supported by the contour lines of salinity which most remarkably change in the near 
wake, say up to 10 diameters behind the cylinder, and than remain almost constant 
indicating that entrainment rates recovered to small values. 
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The evolution of the density field also supports the above assumption that mixing is 
most efficient in those parts of the interface that are only weakly stratified. The core 
of the interface where density gradients are large and the upper part where density 
gradients are small but shear is insignificant remain both basically constant and are 
only moved up and down by the currents around the cylinder to be discussed below. 
However, the lower part of the interface where stratification is weak and shear is 
large is significantly affected by mixing. This is indicated by the distance between 
the lowest salinity contours which drastically increases behind the cylinder 
visualizing the decreasing density gradient due to entrainment of lighter fluid. The 
white spots in the buoyancy production field found in the near wake at Y = 0 and 
Y = 0.5 represent areas of negligible or even negative buoyancy production. In these 
regions the fluid has either completely been mixed or even convection set in. 

Without doubt the most active region for entrainment and mixing is found in the 
wake behind the cylinder. However, the flow field in the wake is strongly affected 
by the situation in front of the cylinder which should therefore not be disregarded in 
the present discussion. The flow in the section along the cylinder axis at Y = 0 is 
completely blocked by the cylinder which induces a downward current forming a 
small vortex at the bottom and an upward current lifting the interface. The latter 
causes an excess pressure to the surroundings driving a backflow current within the 
interface in front of the cylinder which is the source for turbulence production and 
explains the higher buoyancy production found in the upper part of the interface in 
front of the cylinder. The excess pressure caused by the lifted interface also induces 
a strong downward current in streamwise direction which causes an advective 
transport of the interface as can be deduced from the contour lines of salinity. In the 
wake upward currents lift the interface again to a maximum level about 5 diameters 
behind the cylinder before it finally settles to a slightly lower height when secondary 
currents and mixing rates have diminished. 

To get a better idea about the three dimensional flow field around the cylinder 
Figure 8.4 shows the velocity field, buoyancy production and salinities at different 
cross-sections in front of and behind the cylinder. Buoyancy production and salinity 
are given as in Figure 8.3 and the velocity field is represented by the vectors which 
are differently scaled in the individual panels (see reference vector). 
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 X = −5                    log(-G) [m²/s³]

 

 X = −1                   log(-G) [m²/s³] 

 
 X = 0                     log(-G) [m²/s³] 

 

 X = 1                     log(-G) [m²/s³] 

 
 X = 2                     log(-G) [m²/s³] 

 

 X = 5                     log(-G) [m²/s³] 

 
 X = 10                   log(-G) [m²/s³]

 

 X = 30                   log(-G) [m²/s³] 

 
Figure 8.4: Flow field at different cross-sections in front of and behind the 

cylinder for the reference case with Fr = 0.57, Re = 2.5·106, D/d = 2. 
Salinity and buoyancy production are displayed as in Figure 8.3. 
Note the different scaling of velocity vectors. 
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The expected symmetry of the (time averaged) flow field can be found in all 
sections justifying the restriction of the above discussion to longitudinal sections at 
positive Y only. Moreover it is obvious at first sight that the influence of the cylinder 
in lateral direction is indeed limited to a few diameters as directly seen from the 
pattern of the velocity field and further reflected by buoyancy production and 
salinity at Y = ±5 which are identical in all sections, except for X = 30. This is an 
effect of the increasing width of the wake which is reflected by the velocity and 
salinity fields in the last four panels and exceeds the width of the section at X = 30. 
The spreading of the wake is associated with a loss of local intensities equalizing 
high gradients in the flow field and smoothing the local effects of entrainment in 
lateral direction. Before continuing further it seems to be more useful to align the 
discussion of the flow field with the pathway of the current around the cylinder 
starting in the upper left panel of Figure 8.4 and then going from left to right and top 
to bottom. 

Some distance in front of the cylinder at X = −5 a clear divergence of the current to 
the left and right can already be noticed. The highest velocities are found within in 
the interface although they only amount a few percent of the current speed. Moving 
closer to the cylinder at X = −1 lateral velocities close to the cylinder have 
significantly increased and the upward and downward current at the cylinder axis is 
clearly identified from the vectors at Y = 0 with the point of inflection being at about 
Z ≈ 1.3 (i.e. 2/3D). The lifting of the interface caused by the upward current can be 
deduced from the salinity contours and the increased buoyancy production within 
the interface can be associated with the currents induced by the resulting excess 
pressure.  

Right next to the cylinder at X = 0 the downward component of the excess pressure 
induced current is at maximum and of the same order as the current speed. The 
interface has been transported back downwards by this current to reach its minimum 
level behind the cylinder at X = 1. Although a significant vertical downward 
component is still present left and right of the cylinder in this cross-section the 
highest velocities are found at the cylinder axis and are directed upwards. They 
cause the transport of the interface in the wake back upwards and induce large 
vortices which are more clearly identifiable in the following cross-sections farer 
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away from the cylinder. At the bottom another vortex pair is formed which mixes 
the very low bottom part of the current as can be deduced from the slightly higher 
levels of negligible buoyancy production at the bottom indicating that density 
gradients have vanished in that region. However, these vortices are rather 
unimportant concerning the overall mixing process. 

Much more important is the buoyancy production within the interface from which 
the white spots of negligible or negative production are found again right behind the 
cylinder at X = 1 and X = 2. The highest levels of buoyancy production within each 
cross-section are located just around these spots with the overall maximum values 
found at X = 2. It can therefore be assumed that the maximum entrainment rates will 
be found about 2 diameters behind the cylinder and about 1 diameter moved to the 
left and right, respectively. 

Following the current further along the wake at X = 5, X = 10 and X = 30 it can be 
seen that buoyancy production more and more decreases such that at X = 30 
additional mixing by the cylinder is no longer detectable and the natural state found 
in front of the cylinder is recovered. Within the mean flow field, however, the 
influence of the cylinder remains present much longer as clearly identifiable by the 
large vortices. This is clear from the fact that mixing induced by the cylinder is 
actually restricted to a rather small region in the wake which causes quite significant 
lateral density gradients. These gradients induce lateral currents driving the vortices 
and compensating the density difference, a process which will naturally take much 
longer than the actual local entrainment of ambient fluid. 

This homogenization process can be well identified from a comparison of the two 
cross-sections in the far wake at X = 10 and X = 30. Below the interface there is a 
current directed to the cylinder carrying denser fluid from the lateral far field to the 
wake region where the lowest salinity contour line is lifted while it is lowered at the 
sides. A similar pattern is found within the interface where denser fluid in the lower 
part is transported away from the cylinder while above lighter fluid is added from 
the sides increasing the amount of low salinity as indicated by the lifted uppermost 
contour line. 
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From the last cross-section at X = 30 it can be guessed that the restabilization of the 
current is not completely finished within the present computational domain. 
However, it is unnecessary to cover the whole course of homogenization which is a 
mass conserving process and the major interest here is on the dilution of the current 
caused by entrainment of lighter ambient fluid rather than the final restabilized 
pattern of the current. The remaining lateral currents might play a role if more than a 
single cylinder is regarded and structures are arranged in a row, but this is not the 
issue of the present thesis and could be a task for future work. Anyway, concerning 
wind energy devices in the Baltic Sea the effect of these currents on the flow field 
around an adjacent structure can be assumed to be negligible as the distance between 
the constructions can be expected to be at least 20 − 30 diameters and the remaining 
velocities at that distance are very small.  

The actual process of mixing and entrainment, i.e. the adding of mass from the 
ambient fluid to the current, is associated with the level of turbulence and the 
amount of buoyancy production which was found above to be restricted to a 
comparably small region around the cylinder. To assess the overall effect of the 
cylinder on the dilution of the current it is useful to analyze the spatial distribution of 
entrainment rates and efficiency of mixing given by the flux Richardson number. 
Both are directly associated with the depth integrated bulk buoyancy production 
which should therefore be shortly discussed first. 

As elucidated in chapter 5.2.3 the time averaged mixing rate behind a bluff body is 
governed by two processes, random turbulent fluctuations and periodic fluctuations. 
The total time averaged bulk buoyancy production can be split up accordingly into a 
turbulent and a periodic part as shown above in chapter 8.1. The former is 
determined by the turbulence model and the latter by the remaining motions in the 
mean flow field. Figure 8.5 shows the spatial distribution of the individual 
components in the upper and middle panel and the sum of both in the lower panel. 

Compared to the turbulent part of buoyancy production the periodic portion is very 
small (also note the different scaling of contour levels) and restricted to the very 
near field of the cylinder. Most of the total production is simulated by the turbulence 
model which might have been expected as the high Reynolds number implies that a 
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large part of the flow field is governed by isotropic small scale fluctuations. This is 
the basic assumption of the turbulent viscosity/diffusivity approach on which the 
present turbulence model is founded and it can therefore be assumed that the high 
turbulence portion of the flow is well predicted by the model. 

 
  Periodic                                                   �5 3 3

b10 G [m /s ]  

 
 Turbulent                                                  ′5 3 3

b10 G [m /s ]  

 
     Total                                                       5 3 3

b10 G [m /s ]  

 
Figure 8.5: Periodic, turbulent and total amount of bulk buoyancy production for 

the reference case with Fr = 0.57, Re = 2.5·106, D/d = 2. Note the 
different scaling of the contour levels. 
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The total entrainment rate, i.e. the relative amount of added mass to the current, can 
be determined from the bulk buoyancy production using (8.5). The efficiency of 
mixing, i.e. the rate of total produced energy that is used for production of buoyancy, 
however requires the knowledge of the bulk production of turbulent kinetic energy 
which is determined in a similar way as shown above for the bulk buoyancy 
production (cf. eq. (8.1) - (8.4)). For the sake of completeness the spatial distribution 
of total bulk production of turbulent kinetic energy is shown in Figure 8.6. Note that 
the contour levels are 20 times higher than that of bulk buoyancy production above, 
indicating that (as expected) only a few percent of the produced turbulent kinetic 
energy is used for the production of buoyancy.  

                                                                        4 2 3
b10 P [m /s ]

Figure 8.6: Total bulk production of turbulent kinetic energy for the reference 
case with Fr = 0.57, Re = 2.5·106, D/d = 2. 

Finally, the spatial distributions of the total entrainment rate and the bulk flux 
Richardson number are given in Figure 8.7. As explained in chapter 7.3.3 the 
entrainment rate of the undisturbed current cannot be determined from the buoyancy 
production due to the discrepancy of the turbulence model. However, from the 
volume flux it could be reasonably estimated to be about E ≈ 5·10-5 for the present 
case (cf. chapter 7.3.3) which was therefore chosen as the lowest level for the 
entrainment rate and is the threshold value to determine the effective entrainment 
induced by the cylinder. The same problem applies to the flux Richardson number 
which can also not be determined for an undisturbed density current without Coriolis 
forces. A reasonable value seems to be about Rif,b ≈ 0.03 (cf. discussion in chapter 
7.1.5 and Figure 7.9) which has therefore been chosen here as the threshold value to 
identify the influence of the cylinder.   
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 Entrainment rate                                                             105 E 

 Bulk flux Richardson number                                                 Rifb 

Figure 8.7: Total entrainment rate and bulk flux Richardson number for the 
reference case with Fr = 0.57, Re = 2.5·106, D/d = 2. 

The distribution of the entrainment rate is almost identical to that of the bulk 
buoyancy production above which might have been expected from (8.5) where the 
denominator is quasi constant except for some slight deviations of g′D in the rapidly 
varying region very close to the cylinder. Although there is also some entrainment in 
the bow wave in front of the cylinder most mixing takes place in the wake where the 
highest entrainment rates are found at X = 2, Y = ±1 which was already assumed 
above in the discussion about the depth resolved buoyancy production in Figure 8.4.  

The spatial distribution of the entrainment rate allows for an estimate of the area of 
influence of the cylinder which can be assessed to be about 20 diameters long and 
6 diameters wide. Although locally the cylinder induced mixing is very intense with 
entrainment rates being more than 2 orders of magnitude higher it can be assumed 
that the overall effect of an offshore wind energy farm on the current is small as long 
as the structures are not very close to each other. However, this will be discussed in 
more detail in section 8.3.5. 
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From the bulk flux Richardson number it is seen that mixing is not necessarily most 
efficient where the entrainment rates are largest. In contrast the highest efficiency of 
mixing is found where entrainment rates already decay although the pattern of both 
is quite similar at least in the far wake. It is beyond the scope of the present work to 
analyze the mixing process in form of the flux Richardson number in more detail as 
the major interest is on the actual effect which is represented by the entrainment rate. 
However, it can be concluded that entrainment induced by a cylinder is generally 
associated with higher bulk flux Richardson numbers than that found in an 
undisturbed current. For the present case the maximum values of the bulk flux 
Richardson number are found left and right of the middle axis and show that 
buoyancy production can be up to about 16 % of the total produced turbulence. 

Now that the principal effect of the cylinder on a density current has been 
thoroughly discussed it is time to investigate the influence of the governing 
parameters on the flow field and especially on the entrainment rates. This analysis 
should be started with the Reynolds number which is expected to have the least 
influence on the results as within the present order of magnitude (Re ≈ 106) the flow 
field in the wake will not significantly change.  

8.3.2 Influence of Reynolds number 

The effect of the Reynolds number will be studied by a comparison of the reference 
case 1121 above with three other cases, case 1112, case 1131 and case 1133, for 
which the Reynolds number changes between Re = 0.2·106 and Re = 7·106 while the 
other governing parameters are constant (Fr = 0.57, D/d = 2). As can be seen from 
Table 8.1, the dimensional quantities are significantly different with current depths 
ranging between 2 and 20 m and cylinder diameters ranging between 1 an 10 m. If 
the Reynolds number has no influence, which might be expected at least for 
Re > 1·106 as argued above, this would support the assumption that the flow of a 
density current around a cylinder is indeed only governed by the other parameters. 

Figure 8.8 shows the flow field for the four cases at two cross-sections in the wake 
with increasing Reynolds number from top to bottom and the left and right column 
representing the results at X = 2 and X = 10, respectively.  
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 case 1112 (Re = 0.2·106)     log(-G) [m²/s³]

 

 case 1112 (Re = 0.2·106)     log(-G) [m²/s³]

 
 case 1121 (Re = 2.5·106)     log(-G) [m²/s³]

 

 case 1121 (Re = 2.5·106)     log(-G) [m²/s³]

 
 case 1131 (Re = 4.0·106)     log(-G) [m²/s³]

 

 case 1131 (Re = 4.0·106)     log(-G) [m²/s³]

 
 case 1133 (Re = 7.0·106)     log(-G) [m²/s³]

 

 case 1133 (Re = 7.0·106)     log(-G) [m²/s³]

 
Figure 8.8: Influence of Reynolds number on flow field behind the cylinder for 

cases with constant Fr = 0.57 and ratio D/d = 2. Left column: X = 2; 
right column: X = 10. 



8 Entrainment induced by a circular cylinder 

240 

From the discussion about the characteristics of unstratified flow around a circular 
cylinder in chapter 5.1 it is seen that all cases belong to the Transition-in-Boundary-
Layers regime and from Table 5.1 it can be expected that the wake pattern should 
not significantly change for cases 1121, 1131 and 1133, which belong to the very 
similar supercritical and post critical subregimes. However, with a Reynolds number 
of just Re = 0.2·106, case 1112 belongs to the precritical subregime and might show 
some differences or maybe even asymmetries due to the proximity of the single 
bubble regime. In fact, Figure 8.8 shows that the velocity and salinity fields are 
quasi identical for all cases indicating that the vertical shear in the velocity field of 
the incoming current and the strong vertical currents in the wake as a consequence 
of the ‘free surface’ obviously alter the range of the distinct flow states. 

As will be shown in the next section the intensity of the vertical currents are a clear 
function of the depth to diameter ratio and almost vanish for large D/d. Due to the 
relatively small cylinder diameters the Reynolds number in these cases is also 
smaller and the flow again falls into the precritical to single-bubble subregimes, but 
then indeed leads to a clear asymmetry in the wake (cf. Figure 8.10). This shows that 
the Reynolds number has a certain effect (at least on the flow field in the wake) but 
the distinction of the different regimes depends on the depth to diameter ratio. A 
comparison (not explicitly presented here) of case 1212, 1222 and 1232, all 
belonging to the single-bubble regime for D/d = 10, shows that the results are more 
or less identical in analogy to those presented in this section. This leads to the final 
conclusion that the Reynolds number is an unimportant parameter as long as the 
flow belongs to a distinct regime. 

The discussion about the influence of the Reynolds number might thus be stopped at 
this point with the assumption that the similarity in the flow field implies identical 
entrainment rates. At first sight this would be supported by the buoyancy production 
field showing exactly identical patterns for all cases, but looking more closely it is 
seen that the absolute values are different for the individual cases. However, this is 
neither an effect of the Reynolds number nor a numerical error but indeed a realistic 
result as buoyancy production has not been normalized and represents the actual 
dimensional values which depend on depth, salinity and speed of the current. This 
can be best explained by the entrainment rate given by (8.5). As the Froude number 
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is constant the entrainment rate must also be constant (at least in the unaffected 
regions at the sides) and the bulk buoyancy production scales with Us

3 only. For low 
current speeds it is therefore natural to expect lower values of buoyancy production 
which is indeed approved comparing the different cases. 

Although the flow field is independent of the Reynolds number the different 
buoyancy production for the individual cases suggests to proof that the entrainment 
rates in the wake are also identical. For this purposes Figure 8.9 shows the spatial 
distribution of the entrainment rates for the four cases with increasing Reynolds 
number from top to bottom. It is seen that the entrainment rates behind the cylinder 
are indeed identical, but the entrainment induced by the bow wave in front of the 
cylinder shows significant differences. The increasing entrainment rate could be 
explained by the higher speed of the current which is 0.5 m/s for case 1121 and 
0.8 m/s for case 1131. This assumption would be supported by case 1133 where the 
speed of the current is 0.7 m/s and entrainment rates are slightly less than in 
case 1131. However, the most intense entrainment rates in front of the cylinder are 
found for case 1112 with the lowest current speed of 0.22 m/s such that the above 
assumption no longer holds. Anyway, more than 90 % of the total entrainment of 
ambient fluid is found in the wake and the ambiguous behavior in front of the 
cylinder can be assumed to be of minor importance for the major issue of this work. 
Therefore it has not been tried to investigate this effect further within this thesis but 
it might pose an interesting question for future work. 

It can be concluded that the flow field in the wake changes with different flow 
regimes which are basically governed by the Reynolds number but for the present 
problem further depend on the current depth to cylinder diameter ratio. Disregarding 
the differences in front of the cylinder the Reynolds number could be shown to have 
no influence on the flow field and entrainment rates in the wake as long as the 
current is in the same flow regime. This can be assumed to be at least the case for 
realistic conditions in the Baltic Sea and the Reynolds number is regarded as an 
unimportant parameter for the present investigation. From a scientific point of view, 
however, it might be interesting to further investigate the Reynolds number effect by 
small scale simulations at low Reynolds numbers which would then also allow for a 
comparison with laboratory measurements. But this is also a task for future work. 
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 case 1112 (Re = 0.2·106)                                                        105 E 

 case 1121 (Re = 2.5·106)                                                         105 E 

 case 1131 (Re = 4.0·106)                                                         105 E 

 case 1133 (Re = 7.0·106)                                                         105 E 

Figure 8.9: Influence of Reynolds number on entrainment rates for cases with 
constant Fr = 0.57 and ratio D/d = 2. 
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8.3.3 Influence of aspect ratio 

The influence of current depth to cylinder diameter ratio will be analyzed in a 
similar fashion like the Reynolds number above by comparing the reference case 
1121 with two other cases, case 1323 and case 1222 at the same Froude number 
Fr = 0.57. The current depth was kept constant such that the incoming current is 
absolutely identical for all cases and only the diameter of the cylinder has been 
changed. This implies a significant change of the Reynolds number which, however, 
was found above to be unimportant as long as the flow is in the same regime. 

Again the discussion will be started with the flow field in the wake of the cylinder 
represented by the results in the cross-sections at X = 2 and X = 10 which are shown 
in Figure 8.10 in the left and right column, respectively. The aspect ratio increases 
from top to bottom and it should be noted that the vertical scale changes with aspect 
ratio due to the normalization of current depth with cylinder diameter. As the 
incoming current is identical for all cases buoyancy production in the unaffected 
regions at the sides is seen to be also the same for all cases. The flow field within the 
wake, however, is significantly different. It can be followed that the maximum 
velocities increase with increasing diameter which seems natural as the more of the 
current is blocked the higher are the velocities around the cylinder and the more 
intense is the upward current in the center at X = 2. 

As pointed out in section 8.3.1 this current induces large vortices within the interface 
which therefore gain more energy with increasing diameter and for D/d = 1 they are 
so large that they reach down to the bottom where the smaller vortices found for 
D/d = 2 completely disappear. On the other hand for D/d = 10 the cylinder has 
almost no effect on the density current and upward velocities in the middle plane 
and the resulting vortices can quasi not be noted at all. Due to the large aspect ratio 
this flow even more resembles the unstratified flow around an infinite cylinder 
discussed in chapter 5 and therefore an asymmetry in the wake flow is found as to be 
expected for the present Reynolds number defining the asymmetric one-bubble 
regime. However, as the impact of the cylinder on the flow field and especially the 
buoyancy production rates within the interface is negligible this case needs no 
further discussion. 
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 case 1323 (D/d = 1)      log(-G) [m²/s³]  case 1323 (D/d = 1)      log(-G) [m²/s³] 

 case 1121 (D/d = 2)      log(-G) [m²/s³]  case 1121 (D/d = 2)      log(-G) [m²/s³] 

 case 1222 (D/d = 10)     log(-G) [m²/s³]  case 1222 (D/d = 10)      log(-G) [m²/s³] 

Figure 8.10: Influence of depth to diameter ratio on flow field for identical 
currents with Fr = 0.57. Left column: X = 2; right column: X = 10. 

The higher velocities for the smallest aspect ratio D/d = 1 are likely to be associated 
with a stronger impact on the advective transport of the interface which is indeed 
reflected by the contour lines of salinity. Especially the lowest contour line is found 
much deeper than for D/d = 2 suggesting that also mixing is more intense. This is 
supported by the buoyancy production field which has a similar pattern for both 
cases but for the smaller aspect ratio the levels within the interface are higher, 
indicating a larger bulk production and by that higher entrainment rates. 
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Figure 8.11 shows the spatial distribution of the corresponding entrainment rates for 
the three cases with increasing aspect ratio from top to bottom. In fact, it is seen at 
first sight that the entrainment rates are largest for D/d = 1 and decrease with 
increasing depth to diameter ratio. For D/d = 10 the effect of the cylinder can be 
quasi neglected as the maximum values are more or less in the order of the natural 
entrainment rates of the current. So again this case needs no further discussion. 

 
 case 1323 (D/d = 1)                                                          105 E 

 case 1121 (D/d = 2)                                                          105 E 

 case 1222 (D/d = 10)                                                        105 E 

Figure 8.11: Influence of depth to diameter ratio on entrainment rate for identical 
currents with Fr = 0.57. 
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The pattern of the entrainment rates behind the cylinder for the other two cases is 
very similar especially in the near wake. Apart from the absolute higher entrainment 
rates for the smaller aspect ratio there is also a tendency to increased mixing in the 
middle plane along the cylinder axis which is less pronounced for D/d = 2. This 
might be the result of the flow field in the wake which had not only higher velocities 
but was also more concentrated at the cylinder axis for D/d = 1 (cf. Figure 8.10). 
Due to the higher intensities in the flow field the area of influence of the cylinder is 
seen to be longer for the lower aspect ratio but the lateral extent is slightly less than 
for D/d = 2. This could also be expected from Figure 8.10 where the deformation of 
lowest salinity contour, especially at X = 10, is seen to be more confined for D/d = 1. 

With decreasing aspect ratio entrainment rates not only increase in the wake but also 
around and in front of the cylinder. While the strong intensities in the bow wave 
found for the lowest Reynolds number in the preceding section could not be given a 
proper explanation here it might be argued by the higher blocking ratio and the 
resulting velocity field around the cylinder. However, also this is just an assumption 
which has not been further verified as again the higher rates in front of the cylinder 
are clearly visible but make up less than 10 % of the total entrainment. Thus, the 
conclusions of the present thesis are not severely affected by this effect and the 
investigation of the processes involved is left for future work. 

Now, after it was found that the depth to diameter ratio has a quite significant effect 
on the entrainment rates it might be finally worth to have a look at its influence on 
the efficiency of mixing. This is reflected by the spatial distribution of the bulk flux 
Richardson number shown in Figure 8.12 where the aspect ratio again increases 
from top to bottom. As expected the results for D/d = 10 in the bottom panel are in 
an order of magnitude which needs no further discussion and this case is only shown 
for the sake of completeness. The other two cases, however, point out the interesting 
fact that the larger entrainment rates found for D/d = 1 are the result of higher flux 
Richardson numbers and more effective mixing rather than a higher amount of 
turbulence production. This might not have been expected at first but indeed the 
bulk production of turbulent kinetic energy (not shown) is more or less the same for 
both cases and even tends to be slightly higher for D/d = 2.  
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 case 1323 (D/d = 1)                                                          Rifb 

 case 1121 (D/d = 2)                                                          Rifb 

 case 1222 (D/d = 10)                                                        Rifb 

Figure 8.12: Influence of depth to diameter ratio on bulk flux Richardson number 
for cases with constant Fr = 0.57. 

Apart from the lower absolute values for D/d = 2 it is also seen that the pattern is 
different to that for D/d = 1 where the maximum values are found right in the center 
of the wake while they are slightly moved to the left and right for the lower aspect 
ratio. This is consistent with the above findings for the entrainment rate and might 
therefore also be explained by the structure of the flow field in the wake which was 
found to be more concentrated along the cylinder axis for D/d = 1. However, as 
already argued in section 8.3.1 it is beyond the scope of the present work to analyze 
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the flux Richardson number in more detail as the major interest here is actually on 
the entrainment rates. 

It can be concluded that unlike the Reynolds number above the depth to diameter 
ratio has a significant influence on the flow field, entrainment rates and also mixing 
efficiencies. As might have been expected the more of the current is blocked the 
larger is the impact of the cylinder on its dilution. It could be well shown that the 
influence of the cylinder decreases with increasing aspect ratio and more or less 
vanishes for D/d = 10. However, for this case the flow changes to another regime 
and the effect of the Reynolds number can no longer be neglected. Therefore it 
might be desirable to complement the present analysis with another aspect ratio, say 
D/d = 5, to exclude the Reynolds number effect and to get an even better idea about 
the influence of the current depth to cylinder diameter ratio.  

8.3.4 Influence of Froude number 

As seen from the first seven cases in Table 8.1 three different Froude numbers have 
been simulated for a constant depth to aspect ratio D/d =2 and varying Reynolds 
numbers. Although the Reynolds number was found above to be an insignificant 
parameter, for the present analysis of the influence of the Froude number the 
Reynolds number is kept constant for consistency and the reference case 1121 will 
be compared with case 2121 and case 3121. 

The natural effect of the Froude number on the density current is an increase of the 
thickness of the interface with increasing Froude number. It might be therefore 
interesting first to investigate the evolution of the salinity field before the flow field 
in the wake is regarded in detail. Figure 8.13 shows the buoyancy production and 
salinity fields in a longitudinal section along the cylinder axis at Y = 0 for the three 
cases with increasing Froude number from top to bottom. In front of the cylinder the 
salinity contours clearly reflect the thickness of the interface increasing with Froude 
number.  From the lowest Froude number in the upper panel it is now clear why the 
vertical resolution of the numerical grid had to be refined for this case as the 
complete salinity difference of ΔS = 25 PSU takes place over a very small distance .  
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 case 3121 (Fr = 0.36)                                              log(-G) [m²/s³] 

 case 1121 (Fr = 0.57)                                              log(-G) [m²/s³] 

 case 2121 (Fr = 0.92)                                              log(-G) [m²/s³] 

Figure 8.13: Influence of Froude number on buoyancy and salinity fields along a 
section at Y = 0, for cases with constant Re = 2.5·106 and D/d = 2. 

The decreasing density gradients for the other cases as reflected by the larger 
distance of the contour lines provide increasing susceptibility to mixing which 
explains the increasing occurrence of white areas in the buoyancy production field. 
For the largest Froude number the lowest contour line even completely disappeared 
in the wake and within the lower third of the current density gradients vanished or 
even became negative. It should be kept in mind that the absolute salinity difference 
decreases significantly with increasing Froude number (Table 8.1) and the total 
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amount of energy needed to locally mix the fluid gets less with increasing Froude 
number. Moreover Figure 8.13 only reflects the situation along the cylinder axis 
which is not necessarily representative for the lateral extent. To get a better idea 
about the flow field in the wake Figure 8.14 shows the results for the three cases in 
cross-sections at X = 2 and X = 10, in analogy to the preceding sections. 

 
 case 3121 (Fr = 0.36)     log(-G) [m²/s³]  case 3121 (Fr = 0.36)     log(-G) [m²/s³]

 case 1121 (Fr = 0.57)     log(-G) [m²/s³]  case 1121 (Fr = 0.57)      log(-G) [m²/s³] 

 case 2121 (Fr = 0.92)     log(-G) [m²/s³]  case 2121 (Fr = 0.92)      log(-G) [m²/s³]

Figure 8.14: Influence of Froude number on the flow field in the wake for cases 
with constant Re = 2.5·106 and D/d = 2. Left column: X = 2; right 
column: X = 10). 
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The wake patterns for the smaller Froude numbers Fr = 0.36 and Fr = 0.57 are very 
similar and show the typical features discussed in section 8.3.1, with strong upward 
velocities in the center plane at X = 2 and two clearly identifiable counter-rotating 
vortex pairs at X =10. However, the flow field for Fr = 0.92 is significantly different. 
At X = 2 still a strong downward current in the center of the wake can be observed 
and there are only relatively low upward velocities in the core of the interface as 
indicated by the slightly lifted salinity contours. This does not imply that the upward 
current completely disappears for larger Froude numbers, but actually it is found 
further downstream and becomes most pronounced at X = 4  (not explicitly shown 
here). The tendency that all processes move downstream for higher Froude numbers 
could also be detected in Figure 8.13 where the minimum of the interface for 
Fr = 0.92 is found at X ≈ 3 compared to X ≈ 1 for the other cases. This behavior can 
be explained by the fact that the velocity is in the order of the propagation speed of 
disturbances which therefore are transported farer downstream and at the limit for 
Fr > 1 waves should be totally inhibited to travel upstream. 

Another interesting effect of the Froude number is a smoothing of the flow field for 
Fr = 0.92 as very well seen in the cross-section at X = 2 but also for X = 10. This can 
be argued by the low stability of the interface which only offers a small resistance 
against disturbances to spread in cross-stream direction such that the whole flow 
field for the larger Froude number is much more uniform than for the smaller ones. 
By that the formation of the vortex pairs is inhibited and they can only hardly be 
detected in the lower right panel at X = 10. Finally, the field of (dimensional) 
buoyancy production supports the above findings that the amount of energy needed 
for mixing increases with decreasing Froude number and it suggest to investigate the 
effect on the entrainment rates.  

Before the spatial distribution of the entrainment rates is discussed it should be 
recalled that the Froude number for all cases regarded in the preceding sections was 
Fr = 0.57 for which the natural entrainment rate of the undisturbed current was 
guessed to be E ≈ 5·10-5. Now the Froude number is changed in the different cases 
and by that also the natural entrainment rates will change. Hence, for the 
presentation of entrainment induced by the cylinder it is useful to define other 
threshold values which are oriented at the natural rates. As these rates cannot be 
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accurately determined with the present numerical model they were guessed from 
available data in the literature which were compiled in Figure 7.2. Assuming the 
lowest limit the corresponding values could be assessed to be E ≈ 2·10-5 for 
Fr = 0.36 and E ≈ 15·10-5 for Fr = 0.92. Figure 8.15 shows the corresponding 
representation of the entrainment rates for the different cases with increasing Froude 
number from top to bottom. 

 
  case 3121 (Fr = 0.36)                                                       105 E 

 case 1121 (Fr = 0.57)                                                       105 E 

 case 2121 (Fr = 0.92)                                                       105 E 

Figure 8.15: Influence of Froude number on entrainment for cases with constant 
Re = 2.5·106 and D/d = 2. Note the different lowest contour levels. 
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As might have been expected from the similar flow fields in the wake for Fr = 0.36 
and Fr = 0.57 also the patterns of the entrainment rates in the upper and middle 
panel are quasi identical except for slightly stronger maxima in the center of the near 
wake for Fr = 0.57. The absolute values, however, are different and suggest that in 
analogy to undisturbed currents entrainment induced by a cylinder also increases 
with Froude number. This tendency seems logical at first sight but is actually not 
supported by the results for Fr = 0.92 where the maximum values are clearly less 
than for Fr = 0.57 and also the pattern has changed. The highest rates are found right 
in the center of the wake rather than left and right of it and due to the homogeneity 
of the flow field discussed above the spatial distribution of the entrainment rates is 
much more uniform for Fr = 0.92. 

The area of influence of the cylinder is more or less the same for all Froude numbers 
which is the result of the different threshold values based on the natural entrainment 
rates defined above. Also the pattern in the bow wave in front of the cylinder is 
relatively similar for all cases with the tendency to a larger lateral extent with 
increasing Froude number. This seems logical from the above argumentation that the 
potential of a local disturbance to laterally spread increases with decreasing stability 
of the interface and by that with increasing Froude number. Moreover, the 
comparable patterns support the preceding findings that the dynamics of the bow 
wave are presumably associated with the cylinder rather than the current itself. 

As the Reynolds number is the same for all cases the bulk production of turbulent 
kinetic energy is also more or less identical. The difference in the entrainment rates 
above suggest to investigate how much of the total amount of turbulence production 
is used to mix the fluid. This is reflected by the spatial distribution of the bulk flux 
Richardson shown in Figure 8.16 where the Froude number again increases from top 
to bottom. At first sight it can be noted that the patterns correspond to those for the 
entrainment rates shown above and the flux Richardson number increases with 
decreasing Froude number. For the lowest Froude number regarded here, locally 
more than 30 % of the produced turbulent kinetic energy is used for mixing while 
the highest values found for Fr = 0.92 are only around 10 % although the 
entrainment rates in that region are larger than for Fr = 0.36. 
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 case 3121 (Fr = 0.36)                                                      Rif,b 

 case 1121 (Fr = 0.57)                                                      Rif,b 

 case 2121 (Fr = 0.92)                                                      Rif,b 

Figure 8.16: Influence of Froude number on bulk flux Richardson number for 
cases with constant Re = 2.5·106 and D/d = 2. 

As shown above the depth to diameter ratio has a comparably significant influence 
on entrainment rates and mixing efficiencies like the Froude number considered here. 
Therefore it might be interesting to investigate the Froude number dependence of the 
results also for other aspect ratios. As mentioned above this was not be done for the 
present thesis and poses a task for future work to support (or reject?) the present 
local results and to complement the dataset for the determination of the overall 
impact of the cylinder to be discussed in the following section. 
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8.3.5 Total entrainment 

In the preceding sections the principal effect of a circular cylinder on the flow field, 
entrainment rates and mixing efficiencies of a density current has been analyzed and 
the influence of the individual parameters governing the flow has been thoroughly 
investigated. It seems useful now to analyze the overall impact of the cylinder on the 
dilution of the current first, before the influence of Coriolis forces is finally regarded 
in the next section. 

The total entrainment induced by the cylinder is found by integrating the local 
entrainment rates over the area of influence of the cylinder indicated by the contour 
plots shown in the preceding sections (cf. Figure 8.9, Figure 8.11, Figure 8.15). The 
lowest contour levels were chosen by intention to correspond to the natural 
entrainment rates of the undisturbed current such that the additional amount due to 
the presence of the cylinder is clearly identified. However, without the presence of 
the cylinder the current would still be diluted by the natural entrainment rates which 
have therefore first to be subtracted from the results presented above before 
integrating. The corresponding total additional entrainment rates due to the cylinder 
are shown in Figure 8.17 as a function of the Froude number. Each of the individual 
points corresponds to one specific case and the results for the different aspect ratios 
can be distinguished by the various symbols. The curves represent some kind of 
entrainment law which will be discussed below. They have been added primarily in 
order to better visualize the results and to simplify their interpretation.  

The clustering of the individual points reflects the negligible influence of the 
Reynolds number discussed in section 8.3.2. However, also one outlier can be noted 
giving E ≈ 0.04 for Fr = 0.57 and D/d = 2 which is slightly higher than the values 
suggested by all other cases for this Froude number and aspect ratio. It corresponds 
to case 1112 which was found to show an ambiguous behavior with very high 
entrainment rates in front of and around the cylinder leading to the larger total 
amount compared to the other cases. However, as mentioned above, this strange 
behavior cannot be easily explained and could also be a numerical artifact. Therefore 
it seems justified and advisable to exclude this case from the further discussion. 
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Figure 8.17: Total entrainment induced by a circular cylinder as function of the 
Froude number. 

As mentioned above the curves represent the attempt to provide some kind of 
entrainment law. However, due to the sparse data set this law still suffers from many 
uncertainties and might be assumed to be only valid in the lower Froude number 
range represented by the full lines. The data suggest the entrainment law for the 
cylinder to be of the same form like the general entrainment law for undisturbed 
density currents given by (6.16) which in terms of the Froude can be written as: 

1
1

n
cylE m Fr= . (8.6)

From the data for D/d = 2 (disregarding case 1112) the parameters could be 
determined to be n1 = 1.6 and m1 = 0.08. For the lack of further data the exponent n1 
was assumed to be independent of the aspect ratio and the other curves were fit 
through the (single) data points by adjusting the parameter m1 only, which is found 
to be m1 = 0.11 for D/d = 1 and m1 = 0.005 for D/d = 10. 
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At first sight the curves seem to be a reasonable approach showing that the total 
additional entrainment induced by the cylinder increases with Froude number. This 
is consistent with the local entrainment rates discussed in section 8.3.4 above which 
also increased from Fr = 0.36 to Fr = 0.57 (cf.  Figure 8.15). However, it was also 
found that for the higher Froude number Fr = 0.92 the maximum local entrainment 
rates in the near wake decrease again while the rates farer away are higher due to a 
more homogenous flow field. In consequence, the integrated total entrainment rates 
do not increase further as suggested by the power law. Much more they seem to 
approach a maximum value which has been tried to visualize by the dashed line.  

While the increase of the cylinder induced entrainment for low Froude numbers 
seems comprehensible, justifying the appliance of (8.6), the background of the effect 
found for higher Froude numbers is less clear. It might as well be the case that the 
assumption of an asymptotic behavior for higher Froude numbers is wrong and the 
entrainment rates will even decrease which, however, can only be clearly judged 
with additional data. It is therefore inadvisable to provide a mathematical 
relationship for this effect at this point but in any case it can be concluded that the 
increase of the cylinder induced entrainment with the Froude number is limited to 
the lower Froude number range and will quickly approach a maximum value.  

It can be expected that the same behavior also occurs for the other aspect ratios even 
if this assumption cannot be verified here due to the lack of data. By now the 
suggested entrainment law (8.6) was assumed to be valid also for higher Froude 
numbers, simply for reasons of  presentation, but to reflect the uncertainty of the law 
in the range beyond Fr = 0.57 the lines have been dotted. In any case, Figure 8.17 
emphasizes the strong need for a complementation of the present dataset.  

However, the present data suggests that the total entrainment by the cylinder 
increases with decreasing aspect ratio (increasing blocking ratio) − as might have 
been expected from the lateral distribution of the entrainment rates in Figure 8.11. 
To allow for a better interpretation of this effect the data has been plotted as a 
function of current depth to cylinder diameter ratio in Figure 8.18 where the curves 
again represent a kind of entrainment law but now in terms of the aspect ratio. 
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Figure 8.18: Total entrainment induced by a circular cylinder as function of the 
current depth to cylinder diameter ratio. 

The data suggests the general form of this law being exponential: 

( )2
2

n D d
cylE m e= , (8.7)

and the parameters found by a fit through the results for Fr = 0.57 (again ignoring 
case 1112) are n2 = -0.35 and m2 = 0.065. As the increase of entrainment with 
Froude number is limited the parameters for Fr = 0.92 are assumed to be the same, 
maybe with a slightly higher value for m2. Due to the lack of data indeed the slope n2 
was assumed to be valid for all Froude numbers and the curve for Fr = 0.36 was 
found also adjusting m2 only, which turned out to be m2 = 0.033. Although the 
curves seem to represent the present data very well and nicely show the decrease of 
entrainment with increasing aspect ratio, the parameters (at least for Fr = 0.36) 
should be verified by additional data. It should also be noted that the entrainment 
law (8.7) looses validity for D/d → 0 as at the limit entrainment will naturally vanish 
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and will not reach a finite value as indicated by the dotted lines. Thus, it might be 
interesting further to investigate the effect of the cylinder for very low aspect ratios 
in order to assess the ratio with maximum effect, but also this is left for future work.  

Assuming that a larger Froude number for small aspect ratios will not significantly 
increase the entrainment rates the present data allows to asses the absolute maximum 
total entrainment rate induced by a circular cylinder which can be estimated not to 
be higher than about Ecyl ≈ 0.06. However, the actual impact of the cylinder on the 
dilution of the current might be still a bit ambiguous. To shed some more light on 
the absolute values given above it is useful to relate them to the natural entrainment 
rates without the presence of a cylinder. This can be done regarding the total 
amounts of ambient fluid entrained into the current, the ratio of which will provide a 
measure for the actual consequence of the presence of a cylinder compared to the 
undisturbed case. 

The total amount of entrained ambient fluid into an undisturbed density current can 
be given by 

E sQ U E A= ⋅ ⋅ , (8.8)

where Us is the current speed, E is the natural entrainment rate of the current and A 
is the surface area over which the ambient fluid is entrained. The corresponding 
absolute amount of entrainment due to the cylinder is  

2
,E cyl s cylQ U E d= ⋅ ⋅ , (8.9)

where the factor d2 reflects the fact that the total entrainment rate Ecyl given above 
was found by integration over an area normalized by the cylinder diameter. 
Combining (8.8) and (8.9) the impact of the cylinder on the dilution of the current 
can then be defined in terms of the ratio of entrainment induced by the cylinder to 
the natural entrainment: 

2
,E cyl cyl

E

Q E d
Q E A

= ⋅ . (8.10)
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The first term on the right hand side represents the actual impact of the cylinder as it 
defines the entrainment per unit area related to the natural entrainment without the 
presence of a cylinder. The corresponding values for the parameters investigated 
here are given in Table 8.3, where the values in brackets have been extrapolated. 

 
 Fr = 0.36 Fr = 0.57 Fr = 0.92 

D/d = 1 ( 1130 ) 920 ( 330 ) 

D/d = 2 800 650 230 

D/d = 10 ( 40 ) 30 ( 10 ) 

Table 8.3: Total impact of a circular cylinder on a density current in terms of 
relative entrainment rates per unit area (Ecyl / E). 

The values in the second column approve the above findings and reflect an 
increasing impact of the cylinder with decreasing aspect ratio. However, from the 
second row it is seen that the impact of the cylinder decreases with increasing 
Froude number which is the complete opposite from what was found for the 
entrainment rates in Figure 8.17 above. This is just due to the fact that the natural 
entrainment rates increase faster with Froude number than those induced by the 
cylinder (compare parameter n1 with entrainment law (7.62)) which for larger 
Froude numbers are even stagnant. The absolute entrainment rates above are 
therefore relatively meaningless in terms of the actual impact of the cylinder on the 
current which can only be determined in comparison to the undisturbed situation. 

The values given in Table 8.3 allow for an estimation of the global impact of an 
offshore wind energy farm on density currents in the Baltic Sea, which shall be 
shortly illustrated by a simple example based on the reference case 1121 above with 
Fr = 0.57 and D/d = 2. Assume the average distance of the wind energy devices to 
be 25.5 diameters (which presumably is even much more in a real wind farm) the 
normalized area in (8.10) is A/d2 = (25.5d)2/d2 ≈ 650 and the ratio of cylinder 
induced and natural entrainment is 1, which means that the natural entrainment rates 
within the wind farm are doubled. Assuming further that the natural entrainment of 
the current is constant over its whole way from the Sills to the deep basins, the ratio 
of the area of the wind farm and the surface of the current gives the impact of the 
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wind farm. In other words to increase the total amount of naturally entrained 
ambient fluid by only 1 % requires the total area of the wind farm (or many smaller 
ones) to make up 1 % of the total surface of the current which seems to be rather 
large.  

Even if this simple example might seem to be quite academic it reflects a realistic 
situation to some degree and clearly demonstrates that the overall impact of offshore 
wind farms on the dilution of density currents in the Baltic Sea can be assumed to be 
rather small. However, this conclusion can actually only be drawn for purely two-
dimensional currents but oceanic currents are usually subject to the effect of Coriolis 
forces. Hence, it is left to investigate the influence of Coriolis forces on the cylinder 
induced entrainment which will be done now in the next section. 

8.3.6 Effect of Coriolis forces 

The discussion in chapter 7 was focused on density currents under the influence of 
Coriolis forces and the numerical model could be shown to work very well for their 
simulation. However, for the present analysis Coriolis forces have been neglected by 
now as they induce lateral currents which complicate the flow around the cylinder 
and make the analysis of the fundamental processes very difficult. To demonstrate 
this complexity Figure 8.19 shows the flow field at different cross-sections in front 
of and behind the cylinder for the reference case 1121 but now with Coriolis forces. 

The results can be compared to those without Coriolis forces presented in Figure 8.4 
but it should be noted that the velocity vectors here are equally scaled in all cross-
sections and the lower panels show other cross-sections than those in Figure 8.4. 
These differences have their seeds in the lateral current induced by the Coriolis 
forces which can be very well identified in the upper left panel at X = -5 where the 
influence of the cylinder is not intense yet. It clearly shows the typical pattern with a 
relatively slow component in positive Y-direction below the interface and a strong 
flow in negative Y-direction within the interface with velocities reaching up to 50 % 
of the current speed. The latter is the reason for the scaling of the velocity vectors 
and causes any disturbance within the interface to be transported laterally away from 
the cylinder. 
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Figure 8.19: Flow field at different cross-sections in front of and behind the 

cylinder for the reference case 1121 with Coriolis forces. Note that 
in comparison to Figure 8.4 velocity vectors are equally scaled. 
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Note in this context that the view of all cross-sections presented here is against the 
flow direction (negative X-direction) which was not important up to now due to the 
symmetry of the flow patterns. Here, however, it implies that a current appearing to 
be directed to the left in the cross-sections presented in Figure 8.19 actually means a 
transport to the right in streamwise direction.  

Due to the strong lateral current within the interface the cylinder wake is deflected to 
the right (in streamwise direction) and a presentation of cross-sections aligned at 
Y = 0 far away from the cylinder is actually not useful as indicated by the results at 
X = 4 and X = 5 showing the rapidly decaying influence of the cylinder. Even closer 
to the cylinder a sound analysis of the complex flow field based on the cross-
sections presented here is also not possible and requires a different approach.  

However, it is beyond the scope of the present work to go into the details but at least 
some basic features can be extracted from the results in Figure 8.19. The lifting of 
the interface in front of the cylinder at X = -1, the resulting strong downward 
currents around the cylinder at X = 0, X = 1 and X = 2 and the succeeding upward 
current at X = 3 and X = 4 can be clearly identified. The motion of the interface and 
the induced vortices caused by the vertical currents can also be detected. Due to the 
secondary current induced by the Coriolis force these vortices are transported 
laterally away from the cylinder. Alike the increased buoyancy production within 
the interface due to the cylinder shows the deflection to the right (in streamwise 
direction) caused by the lateral currents. 

The complexity of the flow field suggests the patterns of entrainment rates being not 
less complicated. Thus the influence of Coriolis forces was only sparsely analyzed  
by comparing four cases at constant Froude number Fr = 0.57: case 1111, case 1121, 
case 1222 and case 1323 (cf. Table 8.1). Assuming the influence of the Reynolds 
number to be also an unimportant parameter for the present situation, a comparison 
of the first two cases with the same aspect ratio (D/d = 2) will provide an idea about 
the effect of Coriolis forces alone. For this purpose the spatial distribution of the 
additional entrainment rates for cases 1111 and 1121 is shown in Figure 8.20. 
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 case 1111 (D/d = 2, Us = 0.2 m/s)                                                    105 E 

 case 1121 (D/d = 2, Us = 0.5 m/s)                                                    105 E 

 
Figure 8.20: Influence of Coriolis forces on entrainment for two cases with the 

same aspect ratio (D/d = 2) but different current speeds (Ekman 
numbers). Note the different lowest contour levels. 

Before the results are further discussed some comments on their representation must 
be given. For a better comparison with the results of the corresponding cases without 
Coriolis forces as shown in the preceding sections the scaling of the contours has 
been chosen to be the same except for the lowest contour levels. Although the 
natural entrainment rates of the undisturbed currents are E ≈ 2.5·10-5 for case 1111 
and E ≈ 3.5·10-5 for case 1121 (recall the dependence of entrainment rates on the 
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Ekman number (chapter 7.1.5)) the lowest contour levels are 2 times higher. The 
reason for this choice is that in contrast to the cases without Coriolis forces above 
now the natural entrainment is well predicted by the numerical model and the 
changeover to the entrainment induced by the cylinder is much smoother. Therefore 
the threshold value for a distinct determination of the cylinder induced entrainment 
was defined to be twice the natural entrainment rate. 

The entrainment rates nicely reflect the deflection of the cylinder wake to the right 
as expected from the discussion of the flow field above. As the lateral velocities due 
to Coriolis forces increase with the speed of the current the deflection for case 1121 
with Us = 0.5 m/s is much stronger than that for case 1111 with Us = 0.2. Moreover 
it can be observed that the wake becomes longer with increasing speed of the current 
and even leaves the computational domain through the right boundary. However, 
due to the periodic boundary conditions it re-enters through the left boundary and by 
that the total area of influence of the cylinder is kept by the present domain size. The 
increase of the wake length suggests the existence of some kind of sustaining 
mechanism due to the lateral current which obviously also affects the entrainment 
rates caused by the bow wave in front of the cylinder. However, the physical 
background for this mechanism is not clear yet and poses an issue for further 
investigations. 

Even if the area of influence of the cylinder is considerably different for the two 
cases the absolute entrainment rates are very similar and comparable to those found 
for the corresponding cases without Coriolis forces above. This significantly 
improves the credibility of the foregoing results which before might have seemed to 
be a bit shady due to the discrepancy of the numerical model for the simulation of 
purely two-dimensional undisturbed currents. It further shows that the maximum 
local entrainment rates induced by a circular cylinder obviously only depend on the 
Froude number and the current depth to cylinder diameter ratio. The former as a 
measure for the resistance of the current against disturbances and the latter as a 
measure for the intensity of these disturbances. 

However, although the Froude number and the aspect ratio are identical for both 
cases regarded here the spatial distributions of entrainment are significantly different 
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which could be argued by the current speed so far. To more generally account for 
this effect it seems useful to introduce the Ekman number (7.50) as another 
governing parameter for the flow in analogy to the undisturbed currents discussed in 
chapter 7. The corresponding values for the two cases above are K = 0.36 for 
case 1111 and K = 0.92 for case 1121, suggesting that the area of influence of the 
cylinder and by that the total entrainment induced by the cylinder increase with the 
Ekman number. However, for reasons mentioned above it is beyond the scope of the 
present work to further investigate the influence of another parameter and this task is 
left for future research. 

The resemblance of the absolute local entrainment rates with and without Coriolis 
forces found above indicates that the processes of mixing must also be comparable. 
Although the major interest here is on the actual result of mixing rather than the 
details of the processes involved it might be interesting to have a look at the spatial 
distribution of the bulk flux Richardson number at least to compare it with the 
results for purely two-dimensional currents presented above. Figure 8.21 shows  the 
corresponding results for the two cases regarded here where again the scaling of the 
contours is identical to that used in the preceding sections. 

Especially for the less deflected wake in case 1111 the similarity with the results 
presented in section 8.3.1 is striking with minimal efficiencies in the highly 
turbulent near wake and maximum values found farer away from the cylinder where 
entrainment rates have already decayed. Both cases have more or less identical 
maximum values of Rif,b = 0.16 which seems to be universal for this Froude number 
and aspect ratio. 

Concerning the entrainment induced by the bow wave in front of the cylinder it can 
be seen that it is associated with about twice the efficiency of mixing of an 
undisturbed current. Also this is consistent with the findings above and supports the 
corresponding entrainment rates being caused by the cylinder even if the actual 
background of this phenomenon is not fully understood yet. 
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 case 1111 (D/d = 2, K = 0.36)                                                     Rif,b 

 
 case 1121 (D/d = 2, K = 0.92)                                                     Rif,b 

 
 

Figure 8.21: Influence of Coriolis forces on bulk flux Richardson number for two 
cases with the same aspect ratio (D/d = 2) but different Ekman 
numbers. 

To sum up it can be concluded that the local processes of cylinder induced mixing 
are governed by the Froude number and the depth to diameter ratio alone while the 
spatial distribution and the total entrainment depend on the Ekman number. To at 
least partly approve these conclusions the spatial distribution for the remaining two 
cases 1222 and 1323 with constant Froude and Ekman number (Fr = 0.57, K = 0.92) 
but different aspect ratios are shown in Figure 8.22. 
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 case 1222 (D/d = 10)                                                     105 E 

 case 1323 (D/d = 1)                                                                             105 E 

Figure 8.22: Influence of depth to diameter ratio on entrainment rate for cases 
with constant Froude and Ekman number (Fr = 0.57, K = 0.92). 

At first sight the results appear to be consistent with the findings of section 8.3.3 
with much lower entrainment rates for D/d = 10 and higher values for D/d = 1 
compared to case 1121 shown above with D/d =2. Also the increasing intensities in 
front of the cylinder with decreasing aspect ratio are supported by the results above, 
even if the whole spatial distribution for case 1323 here looks a bit chaotic. The 
strange pattern for entrainment in this case might seem a bit ambiguous and should 
be checked for plausibility in the future, but at least it reflects the expected 
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sustaining effect of the Coriolis forces which can also be seen for case 1222. Here, 
however, the pattern looks much more reliable and compared to the corresponding 
case without Coriolis forces in Figure 8.11 the actual entrainment induced by the 
cylinder is much clearer defined even if the local values are of the same order.   

By the spatial distribution of the cylinder induced entrainment discussed so far it 
could be shown that Coriolis forces obviously do not alter the absolute entrainment 
rates (governed by Fr and D/d only) but exert some kind of sustaining effect on 
mixing which increases with the Ekman number. Due to this effect the area of 
influence of the cylinder is much larger compared to that for currents without 
Coriolis forces suggesting that the total cylinder induced entrainment will also be 
larger. Even if it was identical the total impact of the cylinder, given by the ratio of  
cylinder induced entrainment to natural entrainment, would be larger in any case as 
the latter is generally smaller for currents with Coriolis forces. Table 8.4 summarizes 
the results for the four cases with Coriolis forces regarded here with the total 
entrainment and the total impact given in the first and second row, respectively. 

 

 case 1111 
(D/d = 2, K = 0.36) 

case 1323 
(D/d = 1, K = 0.92) 

case 1121 
(D/d = 2, K = 0.92) 

case 1222 
(D/d = 10, K = 0.92)

Ecyl 0.046 0.168 0.119 0.009 

Ecyl / E 1840 4800 3400 260 

Table 8.4: Total entrainment and total impact of a circular cylinder for the four 
cases with Coriolis forces at constant Froude number, Fr = 0.57. 

As expected from the larger area of influence the total entrainment induced by the 
cylinder is indeed much higher than that found in chapter 8.3.5 where the maximum 
possible value was claimed to be about Ecyl ≈ 0.06. Despite the lower natural 
entrainment rates for the currents here also the total impact for the individual cases 
can be seen at first sight to be much larger than the values given in Table 8.3 above. 
Looking more closely and comparing the total impact in the last three columns in 
Table 8.4 with the corresponding values in the second column of Table 8.3 it can be 
noted that for small aspect ratios (case 1323 and case 1121) the total impact here is 
exactly 5.2  times larger than that without Coriolis forces. As the incoming current 
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was the same for all three cases also the ratio of the corresponding natural 
entrainment rates is constant (3.5/5 = 0.7) and it follows that the total entrainment 
induced by the cylinder is about 3.6 times larger. This constant relation implies that 
the slope n2 = -0.35 found for the entrainment law given by (8.7) is interestingly also 
valid for the present cases with Coriolis forces. Using this slope a fit through the 
data suggests the other parameter to be m2 = 0.24 which is exactly 3.6 times the 
value found in section 8.3.5, as might have been expected. 

However, even if the general effect of Coriolis forces could be demonstrated by the 
present examples they do not allow for a precise predication about the influence of 
the Ekman number. If the parameter n2 is really a universal constant or this was just 
a coincidence here must therefore be proved in future work. By now it can only be 
said that unlike for undisturbed density currents entrainment induced by a cylinder 
increases due to the effect of Coriolis forces. Concerning the impact of offshore 
wind energy farms on density currents in the Baltic Sea (cf. example in section 8.3.5) 
it can be concluded that even if the increase of the total impact due to Coriolis forces 
would be a factor of 10 (instead of 5.2 above) the overall effect might still be 
regarded to be of minor importance. 

8.3.7 Concluding remarks 

Before the complete thesis is summarized in the next chapter it is worth to draw 
some conclusions from the above discussions. Entrainment induced by a circular 
cylinder was found to be generally governed by four parameters, the cylinder 
Reynolds number, the Froude number, the depth to diameter ratio and, if Coriolis 
forces are present, the Ekman number. The Reynolds number in the present order of 
magnitude (Re ≈ 106) was found to be unimportant while the other three parameters 
could be shown to have a certain effect on mixing and entrainment. The Froude 
number and aspect ratio govern the local intensities of mixing while the lateral 
extent of the area of influence of the cylinder basically depends on the Ekman 
number. 

The numerical simulations above allowed for a detailed analysis of the flow field, 
entrainment rates and mixing efficiencies due to the cylinder and provided many 
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insights into the fundamental processes. The motivating question for the present 
work concerning the impact of offshore wind farms on the dilution of density 
currents in the Baltic Sea can be answered from the present data to be rather 
insignificant. However, there are still many open questions remaining which require 
further research not only from a scientific point of view: 

• Are the proposed entrainment laws for the dependence on current depth to 
cylinder diameter ratio and (small) Froude numbers correct? If yes, what 
are the right parameters. 

• When does the increase of entrainment begin to decay with larger Froude 
numbers and what is the effect of cylinders on supercritical currents (what 
is the entrainment law for higher Froude numbers)? 

• How does entrainment behave for very low depth to diameter ratios and 
what is the absolute limit for cylinder induced entrainment? 

• What is the exact influence of the Ekman number and are the proposed 
entrainment laws indeed independent of it (is n2 a universal constant)? 

• Will smaller Reynolds numbers become a governing parameter? If yes, 
can laboratory data used for predictions on larger scales or what is the 
scaling effect? 

• What are the exact processes governing entrainment in the bow wave in 
front of the cylinder? 

• What is the overall effect of a cylinder group and how do (closely spaced) 
cylinders influence each other? 

Even if this list might be anything else but complete and it actually only refers to 
circular cylinders it clearly emphasizes that this interesting subject provides a lot of 
tasks for future work. 

 



9 Summary and conclusions  

272 

9 Summary and conclusions 

The major goal of the present thesis was the investigation of the influence of circular 
cylinders on density currents motivated by the desire to determine the impact of 
planned offshore wind farms on the dilution of such currents in the Baltic Sea. The 
approach to the problem in the present case was based on detailed three-dimensional 
numerical simulations requiring a proper definition of the issues of matter and a 
thorough validation of the numerical model. By that the thesis can be basically 
divided into three parts, a basic introduction of the general physical background of 
the governing equations for the numerical model (chapters 2, 3 and 4), a discussion 
of the specific issues of the present problem and the modification and validation of 
the numerical model (chapters 5, 6 and 7) and finally the analysis of the simulations 
for the flow of density currents around a circular cylinder. 

Mixing is generally associated with turbulence which therefore posed a crucial 
aspect for this thesis. After a short introduction to the general problem and the 
background of the basic equations in chapters 1 and 2 the nature of turbulence and 
its consideration in a numerical model were described very detailed in chapter 3. 
Special emphasis was placed on the Reynolds averaged Navier-Stokes (RANS) 
equations being the basis for all simulations in the present work. As it was not clear 
from the beginning which turbulence model is best suited for the present problem 
many different models were considered and thoroughly discussed. 

The actual core of the present work begins in chapter 5 where the general features of 
the flow around a circular cylinder were discussed and the numerical model was 
validated by a comparison with data from the literature (Cantwell & Coles (1983)). 
It was demonstrated that the flow field around a cylinder depends on the cylinder 
Reynolds number and the peculiarities of the different flow regimes were illustrated. 
In view of the high Reynolds numbers to be expected for the actual problem here, 
the validation was carried out for Re = 140000 as no appropriate measurements for 
higher numbers exist. Several different turbulence models and grid resolutions were 
tested and the results were compared to the laboratory data and data of other 
numerical simulations from the literature. The focus was set on the turbulence in the 



9 Summary and conclusions  

273 

wake as it will be the major source for mixing of a density current. It could be 
shown that the grid resolution has no significant influence on the results as long as 
the boundary layer at the cylinder is fine enough resolved. Concerning the 
turbulence models it turned out that a Reynolds stress model (RSM) with the least 
modeling assumptions involved provides very reasonable results, as expected. 
However, in contrast to all other considered models, also the RNG k-ε model and the 
SST k-ω model could be shown to be equally well suited for the simulation of this 
kind of flow. 

After the basic phenomena for the (unstratified) flow around a circular cylinder had 
been discussed and the numerical requirements for their simulation had been 
determined the general aspects of density stratification were presented in chapter 6. 
The processes associated with mixing were explained and the entrainment 
assumption parameterizing the effect of mixing which is a key issue for this work 
was introduced. Other important parameters to describe the effects and properties of 
stratified fluids, like the turbulent Prandtl number, gradient Richardson number, flux 
Richardson number, and stationary Richardson number were presented. 

A major effect of stratification is the damping of turbulence which must also be 
regarded in the numerical model. This can be done by an additional term in the 
transport equations for the turbulent quantities accounting for the production of 
buoyancy. While its role in the turbulent kinetic energy equation is physically sound 
the corresponding effect on the dissipation rate is less clear but could be shown to be 
associated with the stationary Richardson number. By simulations of wind induced 
entrainment in a stably stratified fluid it was found that a reasonable value for the 
stationary Richardson number of Rist = 0.25 provides the best agreement with an 
empirical solution (Price (1979)) based on laboratory data (Kato & Phillips (1969)). 
Moreover this validation of the numerical model showed that mixing in a stratified 
shear layer is indeed mostly governed by the stationary Richardson number and the 
turbulent Prandtl number or the choice of turbulence model play an insignificant role. 

Before the mixing of density currents induced by a cylinder was finally regarded it 
was necessary first to discuss the undisturbed nature of these currents and to validate 
the numerical model for their simulation. To get a better idea about the properties 
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and the behavior of undisturbed density currents a depth integrated theory (similar to 
that provided by Arneborg et al. (2007)) was derived in chapter 7 which also served 
as the major reference for the validation of the numerical model. As oceanic density 
currents are usually subject to Coriolis forces these were included in the theory as 
well as the numerical simulations. While the flow around a cylinder was found to be 
governed by the Reynolds number the governing parameters for density currents are 
the densimetric Froude number and (if Coriolis forces are present) the Ekman 
number and entrainment could be shown to be a function of both parameters. 

The performance of the numerical model for the simulation of undisturbed density 
currents was inspected by means of one-dimensional simulations only resolving the 
vertical water column. A preliminary test approved that the choice of turbulence 
model has no significant influence on the results as long as the stationary Richardson 
number can be fixed which is not immediately possible for the RNG k-ε model due 
to an additional term in the dissipation rate equation. In spite of the good results for 
the unstratified cylinder flow in chapter 5 this model could therefore be regarded to 
be inappropriate for the intention of this work. Instead it could be concluded that the 
SST k-ω model is most well suited for the present purposes and therefore all 
following simulations were only performed with this model. 

The comparison of numerical simulation results with the theory showed very nice 
agreement concerning all relevant properties of the current and the credibility of the 
model could be finally approved by a further validation against field measurements 
in the Arkona Basin (Arneborg et al. (2007)) even if the real situation could only be 
partly reflected within the one-dimensional domain. However, it was also shown that 
without the secondary lateral currents induced by the Coriolis forces the numerical 
simulations for the prediction of the long time evolution of undisturbed density 
currents in a one-dimensional model will inevitably fail. This is due to the zero 
gradient in the velocity profile below the interface which in case of the present 
two-equation turbulence models based on the turbulent viscosity assumption leads to 
a singularity in turbulence production and an ambiguous behavior of the current 
interface. 
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As the analysis of cylinder induced entrainment requires only the simulation of a 
small section of the current the erroneous prediction of turbulence production was 
claimed to be of minor importance which could be supported by reasonable results 
for simulations in a finite channel. Moreover it could be argued that the inherent 
discrepancy of the numerical model is insignificant for the planned simulations as 
the three-dimensional flow field in the wake of the cylinder prevents the singularity 
in turbulence production, anyway. 

According to the motivation of this thesis the analysis of cylinder induced mixing in 
chapter 8 was based on simulations on a natural scale. However, to provide the 
outcome of this work with a more general matter all results were evaluated and 
presented by means of non-dimensional parameters governing the flow. For the 
present problem these were identified to be the densimetric Froude number, in terms 
of the general stability of the current, as well as the cylinder Reynolds number and 
the ratio of current depth to cylinder diameter, in terms of the flow properties around 
the cylinder. If Coriolis forces are further regarded the Ekman number could be 
shown to be a fourth governing parameter. However, the lateral currents induced by 
Coriolis forces significantly complicate the flow around the cylinder and inhibit an 
analysis of the basic effects. The major emphasis was therefore set on currents 
without Coriolis forces and the effect of the Ekman number was only shortly 
discussed at the end. 

The influence of the other governing parameters on the flow field, entrainment rates 
and mixing efficiencies were thoroughly investigated by means of a parameter study. 
As could be expected from the discussion of unstratified cylinder flow in chapter 5 it 
turned out that the Reynolds number in the present order of magnitude (Re ≈ 106) is 
rather unimportant. While the magnitude of the Reynolds number strongly depends 
on the scale of the flow the Froude number and aspect ratio are scale independent 
and could be shown to have a certain influence on the results. 

A comparison of the spatial distributions of the entrainment rates showed that the 
local effect of the cylinder is quite significant with entrainment rates being up to 2 
orders of magnitude larger than those of an undisturbed current. However, the area 
of influence of the cylinder is confined and was found to be only about 20 diameters 
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long and 6 diameters wide, more or less independent of Froude number and aspect 
ratio. On the other hand there is also some entrainment in front of the cylinder 
induced by the bow wave which showed up to change with both parameters even if 
it was not possible to find a clear dependence. As more than 90 % of the total 
entrainment is due to the wake the significance of the bow wave for the global effect 
of the cylinder is limited, anyway. 

The global effect of the cylinder can be regarded as the total amount of additionally 
entrained ambient fluid found by integration of the local entrainment rates. Based on 
the admittedly sparse present data it was possible to provide some kind of 
entrainment laws for the dependence of the total entrainment on the Froude number 
and aspect ratio, respectively. The law for the latter showed an exponential decrease 
of entrainment with increasing depth to diameter ratio while that for the Froude 
number was assumed to be a potential law like for undisturbed density currents with 
entrainment increasing with Froude number. However, as was suggested by the local 
entrainment rates the potential law is only valid for smaller Froude numbers and the 
increase of the total entrainment gets less with higher Froude numbers. By that the 
maximum possible entrainment induced by a cylinder could be assessed to be 
limited and was found to be Ecyl < 0.06. 

The actual impact of the cylinder on a density current cannot be defined by the total 
entrainment alone but must be seen in relation to the natural situation without the 
presence of a cylinder. The total impact, defined by the ratio of the total cylinder 
induced entrainment to the natural entrainment rate, could then be used for an 
estimation of the influence of offshore wind farms. By a simple though quite 
realistic example it was shown that the amount of additionally entrained Baltic Sea 
water into the current approximately scales with the area of potential wind farms. An 
increase of the natural entrainment by only 1 % requires the total area of wind farms 
to make up 1 % of the total surface of the current. 

After the basic effects of cylinder induced mixing had been thoroughly analyzed, 
finally the effect of Coriolis forces was shortly discussed and the Ekman number 
was introduced as a further governing parameter. The complexity of the flow field 
around the cylinder was presented and it could be shown that entrainment in the 
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wake is deflected by the strong lateral currents within the interface due to the 
Coriolis forces. 

In spite of the complex flow field and the deflection of the wake local entrainment 
rates and bulk flux Richardson numbers were found to be independent of the Ekman 
number but only depend on Froude number and aspect ratio as discussed before. 
Coriolis forces seemed to have generally a sustaining effect on entrainment such that 
the area of influence of the cylinder increases with increasing Ekman number and 
the total entrainment also gets larger. By an example typical for a situation in the 
Baltic Sea it could be shown that the total impact of a cylinder is about 5 times 
larger due to the presence of Coriolis forces. However, the effect of Coriolis forces 
and the influence of the Ekman number were only sparsely analyzed and definitely 
require further research. 

It was the first time that the influence of cylindrical structures on mixing and 
entrainment in density currents has been investigated in such detail. Although this 
work provided many insights into the individual processes and allowed for a general 
estimate of the impact of circular cylinders on density currents, the present analysis 
can be regarded to be far from being complete. Some tasks for future work have 
been suggested in chapter 8.3.7, the most important being a complementation of the 
present dataset for the analysis of the Froude number and aspect ratio dependence of 
entrainment by the cylinder and a further analysis of the influence of the Ekman 
number to gain more confidence in the present results. Moreover, it might be 
desirable to reconsider the Reynolds number which is assumed to become an 
important parameter if it takes smaller values. As these are usually found on smaller 
scales it suggests the employment of laboratory experiments the results of which 
could also be used for a direct validation of the numerical model and a further 
approval of the validity of the present findings.  

In any case, concerning the primal question of this work it might be concluded that 
the impact of offshore wind farms on the overall balance of density currents in the 
Baltic Sea is rather small. 
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