

Ocean Breeze Energy GmbH & Co. KG

Hydrodynamisches Design und Zertifizierung von Offshore-Windenergieanlagen

Dr. Kai Irschik

Vorstellung

- Ocean Breeze Energy GmbH & Co. KG
 - Betreiberin Windpark BARD offshore 1
 - Hersteller Windenergieanlage BARD 5.0

- Zur Person
 - Promotion am LWI/FZK: Belastung schlanker Zylinder
 - Beteiligung an der Entwicklung diverser
 Windenergieanlagen (2006: BARD 5.0, Multibrid M5000, 5kW – 8MW)
 - Aufbau einer Zertifizierungsstelle für Windenergieanlagen
 - Aktuell: Projektzertifizierung BO1

Hydrodynamisches Design und Zertifizierung von Offshore-Windenergieanlagen

- Auslegung einer Tragstruktur berücksichtigt viele Aspekte neben dem hydrodynamischen Design, jedoch soll der Fokus heute genau darauf liegen
 - Bodenverhältnisse
 - Wassertiefe
 - WEA Typ
 - Lastreduzierende Regelung
 - Installationsrisiko: Rammen, Suction Bucket
 - Transport, Installation: Krankapazität, Gewicht
 - · Herstellerkapazitäten: Durchmesser, Qualität
 - Herstellungskosten: Länge der Scheißnähte, Komplexität der Herstellung
 - Herstellungsgrenzen: Durchmesser, Abmessungen
 - · Stand der Technik und Richtlinien
 - Innovationsrisiko
 - Inspektionsaufwand
 - ...
 - Hydrodynamisches Design und Lastannahmen

Erfahrungsbericht zu hydrodynamischer Belastung

Hydrodynamisches Design – Lastannahmen Einfluss auf Tragstruktur & RGB

- Relevanz f
 ür Tragstruktur (Turm & Jacket/Monopile ...)
 - Für jede Tragstruktur ist das hydrodynamische Design relevant
 - Methodische Unterschiede treten jedoch je nach Schlankheit und Steifigkeit hervor.

- Einfluss auf Rotor-Gondel Baugruppe ist abhängig von Tragstruktur:
 - Steife, schlanke Struktur: geringer Einfluss
 Jacket
 - Lämmerschwanz: großer Einfluss auf Auslegungslasten Tripile, schlanker Monopile

Auslegung Tragstruktur Kriterien

Wenn möglich: Monopile

Auslegungskriterien

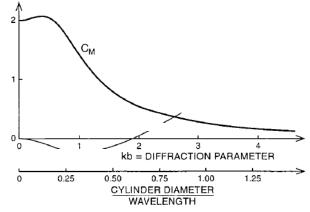
- Eigenfrequenz (Fundament einer Maschine!, Auslegungslasten der WEA)
- Grenzzustand der Tragfähigkeit
 ULS, Extremlasten // Bruch
- Grenzzustand der Tragfähigkeit
 FLS, Betriebsfestigkeitslasten // Ermüdung

Richtlinien für Lastannahmen

GL-IV-2:2012 Guideline for the Certification of Offshore Wind Turbines

IEC 61400-3-2009 Design Requirements for Offshore Wind Turbines

DNVGL-ST-0437:2016 Loads and Site Conditions for Wind turbines


ISO 19902:2007 Fixed steel offshore structures

Belastung schlanker Zylinder Methodik - 60 Jahre oder 4 Jahre Lebensdauer?

Ermittlung der hydrodynamischen Belastung

- MOJS (Morison)
 - Kraftkoeffizienten C_M, C_D
 - Wellenkinematik
- MacCamyFuchs linear diffraction approximation
 - Anpassung C_M(Wellenlänge, Durchmesser)
 - oft auch Anpassung der spektralen Amplitude statt C_M
- Kurzkämmiger Seegang // directional spreading
 - Cos2s Modell recht bekannt, generell in den Richtlinien verankert
 - Mittlerweile auch Ausgabe der Hindcast Modelle
- Umfangsverteilung Wind und Welle
 - Rotor-Gondel dreht mit -> daher onshore nicht interessant
 - Tragstruktur steht fest; Belastung verteilt sich
- Misalignment Wind und Welle
 - Unterschiedliche aerodynamische D\u00e4mpfung in fore-aft und side-side
 - Unsymmetrische Tragstruktur (Tripile); sensitive Anlaufrichtung

Belastung schlanker Zylinder Methodik - 60 Jahre oder 4 Jahre Lebensdauer?

Ermittlung der hydrodynamischen Belastung

- MOJS (Morison) Formel
- MacCamy-Fuchs diffraction approximation
- Kurzkämmiger Seegang // directional spreading
- Umfangsverteilung Wind und Welle
- Misalignment Wind und Welle

- Unterschied Betriebslasten (fatigue) zwischen "einfach MOJS" und aufwendig "alles berücksichtigt": 50 – 70 %
- oder Lebensdauer 60 Jahre statt 4 Jahre

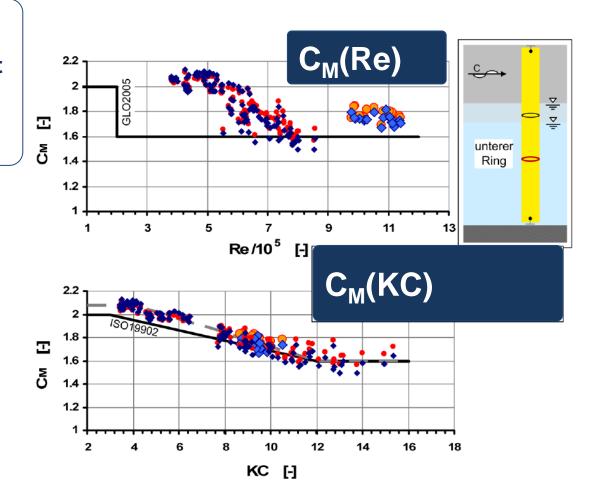
Belastung schlanker Zylinder

Ermittlung der hydrodynamischen Belastung

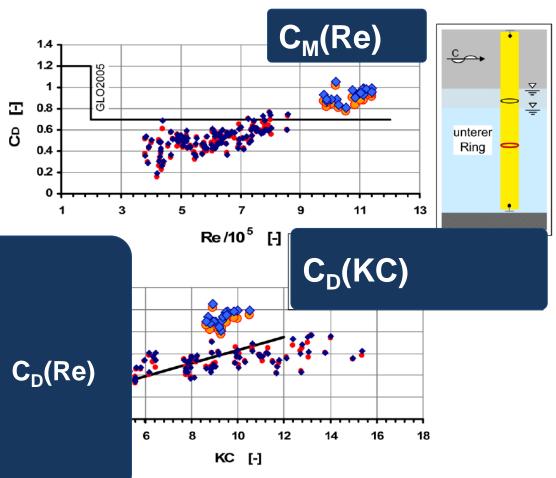
- MOJS (Morison) Formel
- MacCamy-Fuchs diffraction approximation
- Kurzkämmiger Seegang // directional spreading
- Umfangsverteilung Wind und Welle
- Misalignment Wind und Welle

Methoden sind in Richtlinien implementiert

Jedoch: Unsicherheiten bei Anwendung


Wünsche an die Wissenschaft

- Aktuell meist Standardwerte nach ISO 19902:2007 "Fixed steel offshore structures"
- Vereinfacht: C_M, C_D (KC, Ø)



C_M-Koeffizient aus Messungen der Linienkraft und Partikelkinematik FZK, 1998/2000

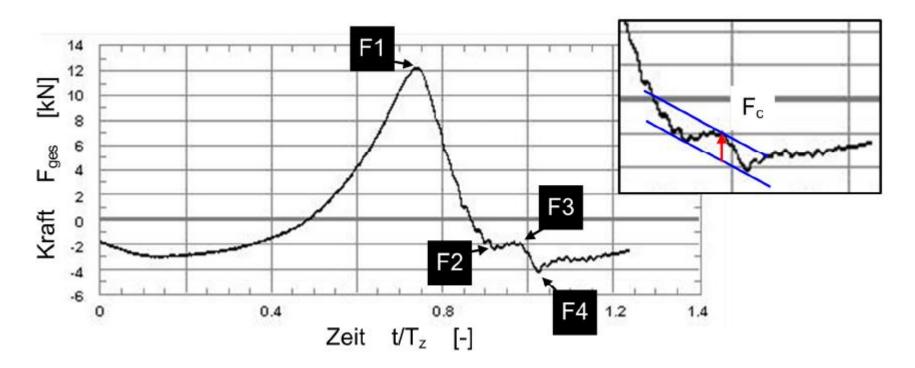
C_D-Koeffizient aus **Messungen der Linienkraft und Partikelkinematik FZK**, 1998/2000

 $C_M(KC)$ bestätigt $C_D(KC)$ nicht bestätigt -> $C_D(Re)$

- für flache Wellen
- für fast brechende Wellen

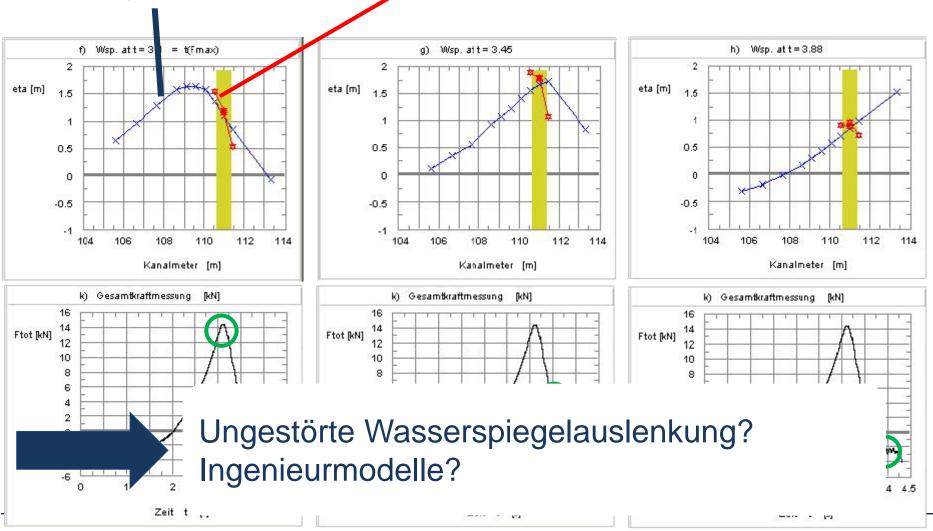
- Aktuell meist Standardwerte nach ISO 19902:2007 "Fixed steel offshore structures"
- Vereinfacht: C_M, C_D (KC, Ø)

Unstimmigkeit auflösen Breite Datenbasis wünschenswert insbesondere flache und **steile** Wellen



z.B. Berücksichtigung von Anbauten (IEC 61400-3)

Ringing – sekundärer Lastzyklus


- Auflauf und Sunk am Zylinder; durch MOJS nicht beschrieben werden
- Schwingung von F1 bis F4
- Kein Ingenieursmodell vorhanden

Ringing – sekundärer Lastzyklus

ungestörte Welle

benetzter Zylinder

Zusammenfassung

- Die Richtlinien werden kontinuierlich überarbeitet
- Viele Methoden sind bereits enthalten und für die Ermittlung der hydrodynamischen Auslegung verfügbar
- Im konkreten Anwendungsfall ist die Bestimmung von Eingangsgrößen möglich, jedoch immer noch mit Unsicherheiten verbunden (Kraftkoeffizienten, Berücksichtigung von Anbauten, directional spread)
- Die Darstellung der Kraftkoeffizienten nach ISO 19902 konnte in großmaßstäblichen Versuchen nur für $C_{\rm M}$ bestätigt werden. Für $C_{\rm D}$ wurde eine andere Abhängigkeit festgestellt.
- Für die Belastung durch ringing fehlt im Moment noch ein anwendbares Ingenieursmodell. Dies tritt bei sehr steilen Wellen auf.