

ENERGY

Certification of Marine Renewables

12. FZK Kolloquium 2017

Kimon Argyriadis 22 February 2017

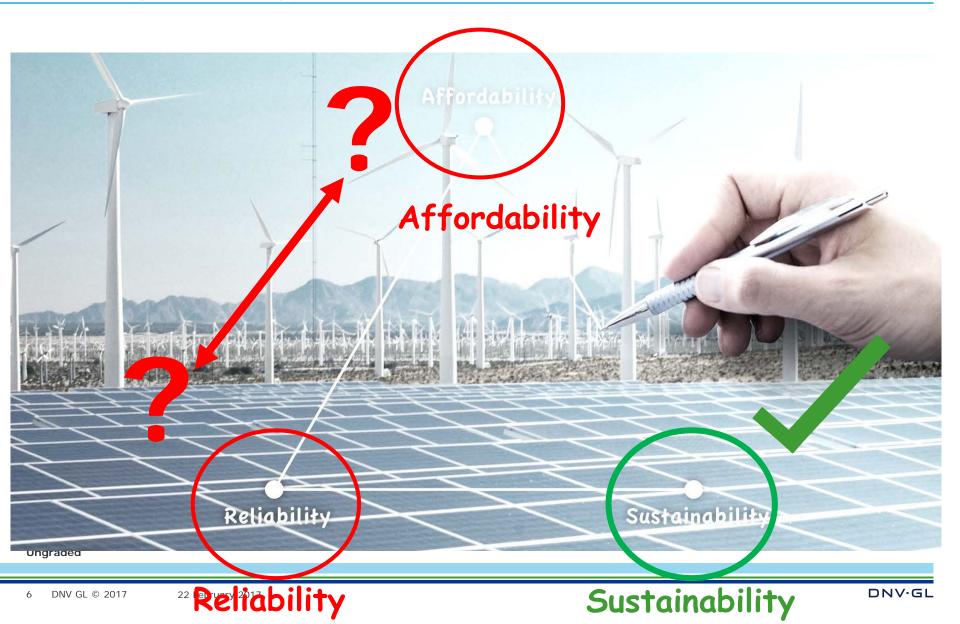
About DNV GL

On 12th September 2013, Det Norske Veritas (DNV) and Germanischer Lloyd (GL) merged to form **DNV GL**

We are today...

- the world's largest ship and offshore classification society
- the leading technical advisor to the global oil and gas industry
- a leading expert of the energy value chain, including renewables and energy efficiency
- one of the world's top three certification bodies

Accredited certification of equipment (products), services and projects in renewable energy


- Component certification
- Prototype certification
- Type certification
- Project certification

- Onshore wind
- Offshore wind
- Wave and tidal
- Solar/PV

Certification is based upon:

- Internationally accepted standards
- Various national certification systems
- DNV GL standards and guidelines

Commercialisation of the marine renewables ...Solving the energy trilemma

What is Certification?

Basic marine renewables certification elements

Design Assessment

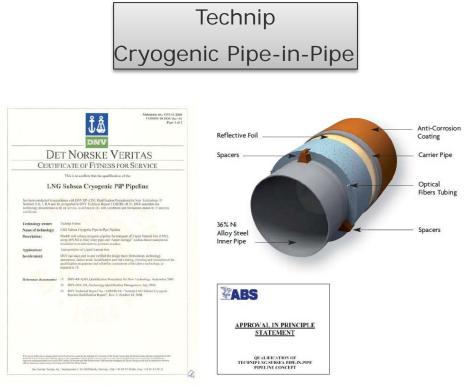
- Plausibility of the design
- Protection and safety
- Loading
- Structural analysis
- Mechanical & electrical installation
- Examination of drawings
- Examination of components

001	

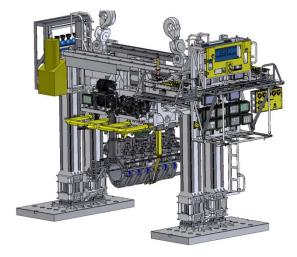
- Model tests
- Component tests
- Test of the prototype
- Comparison of test results with assumptions

Survey and Quality Control

- Examination of fabrication quality
- Witnessing of installation
- Witnessing of commissioning



Certification and Technology Readiness Levels

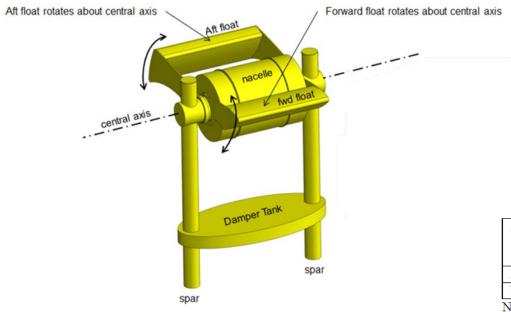

Technology qualification, examples from Oil&Gas

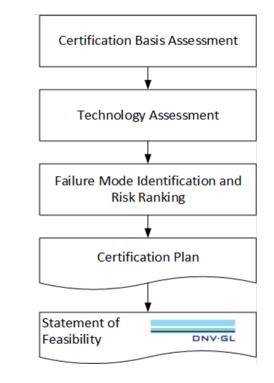
Contact: Afzal Hussain afzal.hussain@dnvgl.com +47 911 24 024

SOURCE:

http://www.technip.com/sites/default/files/technip/publications/attachments/M arine%20LNG%20transfer%20%26%20facilities_November%202013_Web.pdf

Statoil Remote Pipeline Repair System


Statoil Pipeline Repair Systems is developing remote operated repair tools and equipment for pipeline repair beyond diving depth, including replacement of pipeline sections by welded connection, clamp repair and hot tapping.


Technology qualification

		A			Technolo	ogy Status				Tec	hnolo	gy		Definition		
Ар	plication	Area	Proven			eld History	Unpro	ven			lass					
	Knowr	1	1			2	3				1	1	No new tecl	nnical uncertainties		
	New		2			3	4				2	1	New technic	cal uncertainties		
-						=					3	1	New technic	cal challenges		
											4	[Demanding	new technical challe	nges	
											De	script	ion of cons	equences (impact on)		
		i			ndicative			Class	5	Safet y	Envir men	-	C	Operation	Ass ets	Co st
Class	Name	D	escription		annual ailure rate (up to)	Refe		1					Negligible	effect on production (hours)		(€)
1	Very Low	Negligibl	e event frequend	су	1.0E-04	Accidental fail	(event not ure)		+				Partial lo	ss of performance		
2	Low	Event	unlikely to occur		1.0E-03	Strengt	h / ULS	2					(retrieval r	not required outside enance interval)		
3	Mediu m		ly expected to oc		1.0E-02	Fatigue	e / FLS		+					rformance requiring		┠───┦
4	High		eral events expe during the lifetim		1.0E-01	Operation Ic	w frequency	3						interval		ľ
5	Very high		eral events expe ccur each year	cted	1.0E+00	Operation hi	gh frequency							Interval		
				•		Co	nsequence	1					Total loss of	production up to 1 m (€)		
			Probability		1	2	3			4			5			
			5	Lo	ow	Med	High			High			High			
			4	Lo	w	Med	Med			High			High	f production greater		
			3	Lo	wc	Low	Med			Med			High	an 1 m (€)		
			2	Lo	wc	Low	Low			Med			Med			!
			1	Lo	ow	Low	Low			Low			Med			
					no action requ and improvem	uired ent required to re	educe risk to Lov	v								
Ung	raded		High	Not accept	able: mitigatio	on and improvem	ent required to r	educe ris	k to L	.ow (ALA	ARP)]		

Risk Based Certification for Marine Renewables

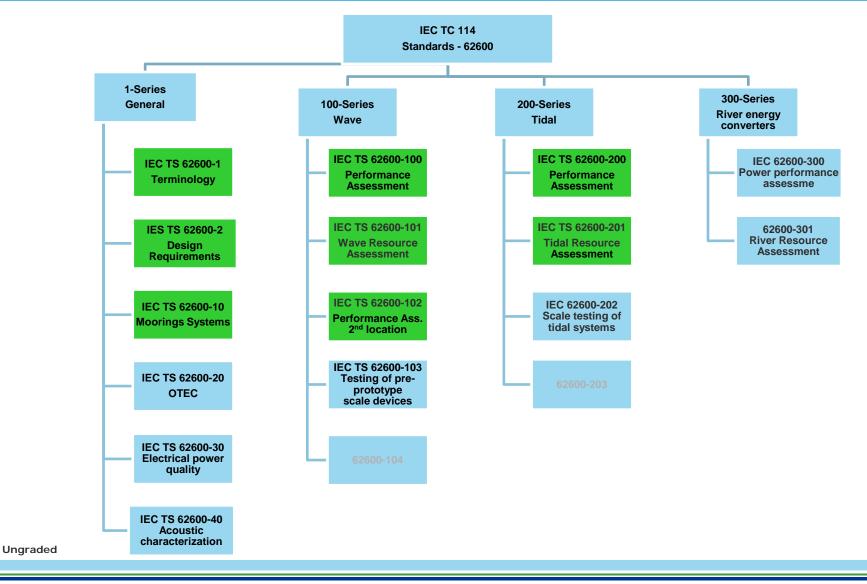
- No mature technology yet
- Diversity of technologies and strategies
- How to achieve success varies from technology to technology

Application	ation Technology status					
area	Proven	Limited field history	New or unproven			
Known	1	2	3			
New	2	3	4			

Notes:

1: No new technical challenges 2: New technical uncertainties

3: New technical challenges


4: Demanding new challenges

DNV GL – ST-0164 Tidal Turbines

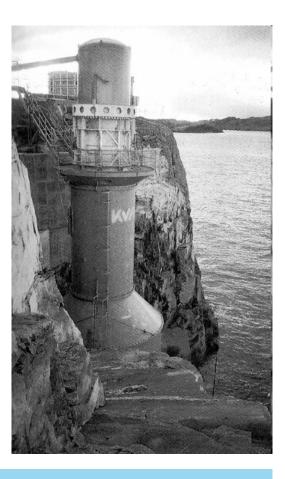
	DNV·GL
STANDARD	
DNVGL-ST-0164	Edition October 2015
Tidal turbines	
The electronic pdf version of this document found through http The documents are available free o	://www.dnvgl.com is the officially binding version. f charge in PDP format.
	AS

- Design principles
- Manuals for onshore and offshore works
 - Site conditions and characterization
 - Loads and load effects
 - Safety factors
 - Materials for structures and blades
 - Floating stability
 - Steel structures
 - Foundation and mooring system design
 - Blades, machinery, electrical systems
 - Protection and safeguarding
- Corrosion protection
- Marine operations
- Tests and measurements

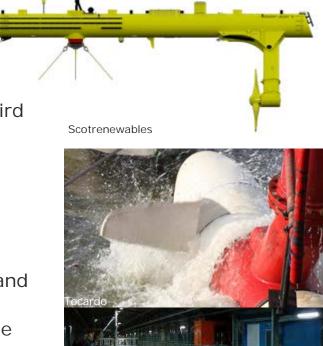
IEC TC114, Marine Renewables work programme

Tank testing

- Model tests / pre-prototype
 - IEC TS 62600-103, -202 (under development)



Prototype and tank testing


- Power performance measurement
 - IEC TS 62600-100, -200
- Load measurement to be developed

Conclusion

- Certification provides additional confidence to stakeholders
 - Compliance with existing standards is assured
 - Risks are reviewed through a structured process with third party oversight
- The Marine Renewables sector requires a special approach regarding certification
 - Risk based approach based on Technology Qualification process
 - Handling of uncertainties, novelty, safety, environment and functional requirements
 - Use of existing technology that is compatible with marine renewables
- Significant effort on standardization is needed
 - Design standards
 - Test standards

orschungszenttum Küste

Thank You!

Certification of Marine Renewables FZK Kolloquium 2017

Kimon Argyriadis Kimon.argyriadis@dnvgl.com +49 40 36149 138

www.dnvgl.com

SAFER, SMARTER, GREENER