

The morphodynamics of sandy shorelines and the effects of sand nourishments

FZK Colloquium, Hanover

15 February 2018

<u>Rik Gijsman, MS.c.</u> Dr. Ing Jan Visscher Prof. Dr. Ing habil. Torsten Schlurmann

Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, www.ludwig-franzius-institut.de, gijsman@lufi.uni-hannover.de

Presentation Outline:

- Sand nourishments as a 'Building with Nature' solution
 - Control parameters
- Identify sandy shoreline dynamics
 - Comparing two cross-shore profiles
- Quantify sandy shoreline dynamics with Empirical Eigenfunctions
 - Academic examples
- The lifetime of sand nourishments
 - \geq Two case study applications

Conclusions

Sand nourishments as a 'Building with Nature' solution

- Using environmental values in engineering solutions:
 - Limit the environmental impact
 - Including the natural dynamics
- Control parameters of sand nourishments:
 - > Timing
 - Frequency (e.g. volume)
 - Location
- Important to remember for this presentation:
 - Identify the effect of the control parameters of sand nourishments on the lifetime of the sand nourishments
 - Lifetime of the sand nourishment is the period of interruption in the natural morphodynamics of sandy shorelines

Traditional beach and dune nourishment

Shoreface nourishment

Sandy shorelines and its dynamics

Visual comparison of two coastal profiles

Static comparison coastal profiles 2017

Beach characteristics:

- Upper beach slope (~1:50)
- Lower beach slope (~1:80)
- Median grain size ~180 µm

Shoreface characteristics:

- 8 m depth contour ~1500 m offshore
- 3 subtidal sandbars

Beach characteristics:

- Upper beach slope (~1:20)
- Lower beach slope (~1:30)
- Median grain size ~300-400 μm

Shoreface characteristics:

- 8 m depth contour ~ 700 m offshore
- 2 subtidal sandbars

Dynamic comparison coastal profiles

Beach dynamics:

- Stable on the timescale of years
- Shoreface dynamics:
- 2-3 migrating sandbars

Dynamic equilibrium (keeps changing)

 \rightarrow Characteristics of migrating waves

Beach dynamics:

Stable on the timescale of years

Shoreface dynamics:

1-2 stable sandbars

Static Equilibrium (preferred configuration)

 \rightarrow Characteristics of standing waves

Quantifying the non-stationary dynamics of coastal profiles

Mathematical technique to describe:

- \succ Natural dynamics \rightarrow Standing or migrating wave signals
 - E.g. Aubrey (1978), Wijnberg and Terwindt (1995) and Ruessink et al., (2003)
- \succ Interrupted natural dynamics \rightarrow Non-stationary standing or migrating waves
- Empirical Orthogonal Functions (EOF)
 - Reorganises the information in the dataset with new spatial wave signals $f_k(x)$
 - The first new spatial wave signal $f_1(x)$ describes most of the variance (spreading)
 - Temporal weights $w_k(t)$ indicate the presence of the new wave signals in time

$$Z(x,t) = \sum_{1}^{k} w_{k}(t) \cdot f_{k}(x)$$

Amplitude and Phase information (Hilbert Transform)

Prior to the analysis, temporal phase information is added to the dataset with the Hilbert transform (*E.g. Horel*, 1983)

 $Z(x,t) = X(x,t) + i \cdot Y(t)$

space

The effects of sand nourishments

Beach nourishments Sylt

Westerland (Sylt)

- Beach Profile 0+205
- Period between 1985 and 2017
 - Between 0 and 4 measurements per year
 - Average 1.9 measurements per year
- 15 beach nourishments

Lifetime of beach nourishments

> Lifetime = time between nourishment and the first time that the profile is back to the average elevation

Relation between lifetime and design of beach nourishments

- Nourishment volume vs. nourishment lifetime
- Beach elevation (after nourishment) vs. nourishment lifetime

Based on these figure it can be concluded that:

- Lifetime = f(...
 - 🗸 Volume
 - 🗸 Timing
 - Others..
 - Hydrodynamics?

Shoreface nourishments Ameland

Ameland

- Beach Profile 1700
- Period between 1976 and 2017
 - >1 measurements per year
- 3 shoreface nourishments

Relation between lifetime and design of shoreface nourishments

- Design of the 1999 shoreface nourishments
- Design of the 2011 shoreface nourishments

Based on these figures it can be concluded that:

- Lifetime = f(...
 - Location
 - Others..
 - Timing?
 - Volume?
 - Hydrodynamics?

Conclusions

Differences in sandy shoreline dynamics

- Static and dynamic equilibriums
- Natural and human induced

Empirical Orthogonal Functions

- Identify prominent patterns in large datasets
- Used to quantify natural beach dynamics
- Potential to identify and even quantify the effects and lifetime of sand nourishments

Sylt:

- 90% of the beach dynamics can be attributed to structural erosion which is counteracted by beach nourishments
- Nourishment lifetime depends on, amongst others, the volume and the beach elevation.

Ameland:

- 45% of the shoreface dynamics can be attributed to offshore migrating sandbars
- Sand nourishments stop the sandbars from migrating and even reverse the migrating direction during its lifetime
- Nourishment lifetime depends on, amongst others, the cross-shore location

Discussion

Current limitations:

- No hydrodynamics included yet
- No short term morphodynamics included (e.g. storm impacts or beach recovery processes)
- No long term developments (e.g. profile adaptations to sea level rise)

Outlook:

- Study different designs of sand nourishments in different types of sandy shorelines
- Study scenarios with adapted designs of sand nourishments using numerical modelling

STENCIL Strategies and Tools for Environment-Friendly

Shore Nourishments as Climate Change Impact Low-Regret Measures

Federal Ministry of Education and Research

Thank you for your attention!

Any questions or recommendations?