

Ludwig-Franzius-Institute

for Hydraulic, Estuarine and Coastal Engineering

Leibniz

Universität

Leichtweiß-Institut für Wasserbau Abteilung Hydromechanik, Küsteningenieurwesen und Seebau

Technische Universität Braunschweig

Investigation of aquaculture components for increased efficiency

| Rebekka Gieschen, Jannis Landmann, Nils Goseberg, Arndt Hildebrandt | | FZK Kolloquium 2019 | 21.03.2019 | Outline

Introduction - Background

- Overall, increasing demand for ٠ aquatic products
- **Bivalves** an essential source of • proteins
- Aquaculture is one of the fastest-• growing sectors for protein-based food

2005

20 1995

2000

Other aquatic animals

Crustaceans Molluscs

Finfish

Aquatic plants

2010

2014

Introduction - Background

- Aquaculture near-shore faces different challenges:
 - Stakeholder conflicts
 - Nutrient depletion
 - Changes in species assemblage
 - Marine litter •
- Perspective move to offshore • location to offset deficits
- Challenging conditions have to be accounted for

Marlborough District Council; 2018

Goseberg, N; 2017

Introduction - Background

- Hydrodynamic forces acting on fixed and floating structures **commonly** investigated
- Existing research related to shellfish aquaculture is scarce
 - e.g. Buck, B.H.; Stevens, C.; Plew, D. R.
- Little research available regarding physical laboratory tests of shellfish aquaculture

Bradshaw, P; 1965

Plew, D.R.; 2005

Introduction - Objectives

- Investigation of wave-current forcing
 on aquaculture structures
 - Basic research regarding motion and forces of mussels / mussel-encrusted lines
 - Project research of "revolutionary" aquaculture designs
- **Determination of response** of structure to waves and currents
- Assessment of survivability of structures in extreme conditions

<image>

Outline

- Collection from aquaculture farm close to Kiel, Germany
- 3.62 m dropper line of Baltic Blue
 Mussels
- Transport & storage in aerated tank with Baltic Sea water

Landmann, J.; 2017

- Portioned in three specimens (~1 m)
- Data acquisition
 - Per specimen
 - For single mussels
- For each specimen determination of
 - Weight
 - Length
 - Width every 5.0 cm
 - Displacement
 - Bending stiffness

Landmann, J.; 2017

- Methodology:
 - Determination of drag and inertia coefficients
 - Current (Drag) & Wave tests
 - Morison equation: $F = \frac{1}{2}\rho C_D u^2 A + \rho C_M V \dot{u}$

Landmann, J; 2017

- Mounting frame fitted with:
 - 6-axis-force transducer
 - Ultra-sonic wave gauges
 - Acoustic Doppler Velocimeter
- Carriage fitted with:
 - Incremental rotary recorder
 - Webcam
 - Underwater camera

- Drag tests with four velocities

 - $Re = \frac{u * D_i}{v}$ $Re = 2.0 \times 10^4$ to 1.1×10^5
- **Top- and bottom-mounted**
 - Test for load-evasion potential of dropper lines
 - ~80% force reduction •

0

Landmann, J; 2017

- Calculation of C_D-values:
 - Levels about $C_D = 1.6$ after initial drop
 - Little changes in C_D for higher Re-Numbers •

- Inertia tests with three waves
 - $H_s = 0.1 m, 0.12 m, 0.15 m$
 - $T_p = 1.2 \ s, 2.4 \ s, 1.65 \ s$
- Top- and bottom-mounted
 - Test for load-evasion potential of dropper lines
 - ~80% force reduction
- *C_M*-values: In progress

Landmann, J; 2017

Outline

Surrogate creation

- Aim is to create object with similar characteristics in currents and waves as live mussels
- Assuming that C_D and C_M are influenced by surface geometry
- Evaluation via Abbot-Firestone-Curve
 - Describes surface texture of an object
 - Material distribution as a function of depth

Surrogate creation

- Concept 1:
 - Based on single mussels
- Concept 2:
 - Closest fitting 3D-scanned section to mean AFS
- Concept 3:
 - Perfect fit to Abbot-Firestone Curve with simplified geometry

Ongsiek, T..; 2017

R. Gieschen, J. Landmann, N. Goseberg, A. Hildebrandt | FZK Kolloquium | Seite 17

Leibniz Universität Hannover

0

0

Outline

1:1 Single surrogate tests

- Methodology:
 - Determination of drag coefficients via current tests
- Tests with seven velocities:

•
$$0.1\frac{m}{s}, 0.25\frac{m}{s}, 0.35\frac{m}{s}, 0.50\frac{m}{s}, 0.75\frac{m}{s}, 1.00\frac{m}{s}, 1.20\frac{m}{s}$$

• C_D-values: In progress

Landmann, J..; 2017

1:1 dropper line surrogate tests

- Same tests as live mussels
 - Drag tests with four velocities
 - Inertia tests with three waves
 - Top- and bottom-mounted
- Evaluation regarding inertia and drag coefficients
 - Comparison to live-mussel data
- C_D- and C_M-values: In progress

2

R. Gieschen, J. Landmann, N. Goseberg, A. Hildebrandt | FZK Kolloquium | Seite 20

Leibniz Universität Hannover [in prep.]

2019

<u>a</u>

et

andmann

Outline

Surrogate 1:X tests

- Scaled surrogates
 - 1:4, 1:10 and 1:16 with geometric similarity
 - Concept 2 dismissed

Landmann, J; 2017

Landmann, J; 2017

Gieschen et al., 2019 [in prep.]

Surrogate 1:X tests

- Methodology
 - Wave tests only
 - Determination of drag and inertia coefficients
 - Investigate scaling effects on coefficients
 - Determination of limits of down scaling

Surrogate 1:X tests

- **Mounting frame** fitted with:
 - 2-axis force transducer
 - Ultra-sonic wave gauge
- Top- and bottom-mounted
 - Sensor set-up change for top mounted only
 - Test for load-evasion potential ~90 %
- Inertia tests with 5-7 waves each

 C_D , C_M and scalability: In progress

 Froude-Scaling of waves from live mussel tests

Outline

- Structure
 - "Traditional" system in NZ
- Objective
 - Novel measurement concept regarding the mooring forces and accelerations
 - Influence of mussel dropper lines on force evolution under waves and currents
 - Motion response of the system under waves and currents

Vitasovich, P.; 2017

Goseberg, N.; 2017

- Wave spectra and
- 5 Wave sets:
 - Height 1.2 25 cm
 - Period 0.76 2.9 s

Goseberg, N.; 2017

Landmann, J.; 2018

- Mooring Forces
 - Added mass of mussels increases tension
 - Submerged system experiences higher loads due to pretension
 - Snapping loads present

0

0

Accelerations

- Mussels dampen acceleration due to hydrodynamic mass
- Submerged system experiences lower accelerations
- Positive implications
 regarding drop-off

- Numerical Simulation
 - OrcaFlex-Model
 - Validation with experimental data
 - Parametric study planned

Discussion

