Numerical simulation

Concluding remarks

Behaviour of suction buckets under monotonic and cyclic tensile loading in sand

Dipl.-Ing. Patrick Gütz

Institute for Geotechnical Engineering

14th FZK-Colloquium, 21st March 2019

Numerical simulation

Introduction

- Suction bucket foundations for offshore wind
- Pros and cons
- 2 Physical model tests
 - Testing facility
 - Monotonic tests
 - Cyclic tests
- 3 Numerical simulation
 - Finite element model
 - Monotonic tests
 - Cyclic tests
 - Transient loading
- 4 Concluding remarks
 - Conclusion and outlook

Task

Enlarging demand for renewable energy requires appropriate foundations for OWT

Multipods supported by 3 or 4 suction bucket foundations

Current state

Tensile forces to be omitted or limited to the drained capacity

Target

Determination of the partially drained tensile bearing behaviour

Numerical simulation

Concluding remarks

- High partially drained tensile resistance
- + No pile hammer required (costs)
- + Silent installation
- + Economically beneficial
- + Floatable structure
- + Decommissioning is feasible
- Complicated fabrication
- Critical suction during installation (avoid erosion and buckling)
- Drained tensile resistance is low
- Potential for heave and pore pressure accumulation

Introduction 00 Testing facility Physical model tests

Numerical simulation

Concluding remarks

actuator load cell loading frame 0.60 m 1/2/1/2/1/2/ 2.05 m suction bucket overflow vessel sand container filter gravel with geotextile 7777 11111 2.50 m pump

Constant heave rate

 (Partially) drained monotonic response

Constant force

Time-dependent heave

Cyclic force

 Pore pressure and heave accumulation

Physical model tests

Numerical simulation

Concluding remarks

Tests with L/D = 500mm/510mmHigher heave rates induce:

 Higher tensile resistance (mainly due to suction force)

Physical model tests

Numerical simulation

Concluding remarks

Tests with L/D = 500mm/510mmHigher heave rates induce:

- Higher tensile resistance (mainly due to suction force)
- More undrained behaviour (less dissipation inside the suction bucket)

Physical model tests

Numerical simulation

Concluding remarks

Tests with L/D = 500mm/510mmHigher heave rates induce:

- Higher tensile resistance (mainly due to suction force)
- More undrained behaviour (less dissipation inside the suction bucket)

Less gap opening

Introduction

Physical model tests

Numerical simulation

Concluding remarks

Heave accumulation

- Cyclic loads exceeding the drained capacity
- Normalised loads (divided by drained resistance)
- Two load frequencies

Introduction

Physical model tests

Numerical simulation

Concluding remarks

Heave accumulation

- Cyclic loads exceeding the drained capacity
- Normalised loads (divided by drained resistance)
- Two load frequencies

Physical model tests

Numerical simulation

Concluding remarks

Low load level

 Minor heave for numerous cycles followed by significant heave accumulation

Numerical simulation

Concluding remarks

Low load level

- Minor heave for numerous cycles followed by significant heave accumulation
- Accumulation of negative differential pressure

Physical model tests

Numerical simulation

Concluding remarks

103

Low load level

- Minor heave for numerous cycles followed by significant heave accumulation
- Accumulation of negative differential pressure
- Initial settlement of plug and subsequent heave

Physical model tests

Numerical simulation

Concluding remarks

High load level

More distinct heave accumulation

Physical model tests

Numerical simulation

Concluding remarks

High load level

- More distinct heave accumulation
- Significant negative differential pressure with wider span for higher amplitudes

Physical model tests

Numerical simulation

Concluding remarks

103

f=1 Hz (104=0.86±0.16

9 (2 89 = 1 90 + 0 99

High load level

- More distinct heave accumulation
- Significant negative differential pressure with wider span for higher amplitudes
- No settlement of soil plug, but relevant heave

Physical model tests

Numerical simulation

Concluding remarks

Effect of load frequency

 Higher heave accumulation for lower frequency

Physical model tests

Numerical simulation

Concluding remarks

Effect of load frequency

- Higher heave accumulation for lower frequency
- Negative differential pressure accumulates faster for lower frequency

Physical model tests

Numerical simulation

Concluding remarks

Effect of load frequency

- Higher heave accumulation for lower frequency
- Negative differential pressure accumulates faster for lower frequency
- Plug heave commences as significant heave takes place

Introduction 00 Physical model tests 000000 Numerical simulation

Concluding remarks

Finite element model

Features

- Hydro-Mechanically coupled analysis in ABAQUS/2017
- Water elements
- Static and cyclic loading
- Second-order elements (CAX8P)

Soil properties

- Stress-dependent stiffness
- Elasto-plastic soil behaviour (Mohr-Coulomb plasticity model) with non-associated flow rule
- Permeability depends on void ratio
- Calibrated in laboratory tests

Physical model tests Numerical simulation 000000 C●0000

Concluding remarks

Simulation of model tests with L/D = 500 mm/510 mm

Forces are well represented

Monotonic tests

Physical model tests

Numerical simulation

Concluding remarks

Simulation of model tests with L/D = 500 mm/510 mm

- Forces are well represented
- Negative differential pressure is somewhat underestimated

Physical model test

Numerical simulation

Concluding remarks

Simulation of model tests with L/D = 500 mm/510 mm

- Forces are well represented
- Negative differential pressure is somewhat underestimated
- Plug heave deviates slightly for lower heave rates

Numerical simulation

Concluding remarks

Successful simulation of model tests with L/D=500 mm/510 mm regarding

Heave accumulation rate

Numerical simulation

Concluding remarks

Successful simulation of model tests with L/D = 500 mm/510 mm regarding

- Heave accumulation rate
- Negative differential pressure

Introduction 00 Transient loading Physical model tests

Numerical simulation

Concluding remarks

Concept

- Self weight of the OWT induces compressive loads on the foundations
- Environmental loads (wind and waves) may invoke tensile loads
- The occurrence of frequent tensile loads is unlikely
 - \rightarrow Singular sinusoidal tensile loads with subsequent consolidation
 - \rightarrow Simulation with L/D = 10m/10m
 - \rightarrow Multiple normalised load magnitudes $0.125 \leq F_{max}/F_{drain} \leq 4$
 - → Evaluation of heave and negative differential pressure

siont loading	

Numerical simulation

Concluding remarks

Heave depends on the load magnitude

- $\rightarrow F_{max}/F_{drain} \leq 1$: linearly affected by F_{max} during loading
- $\rightarrow F_{max}/F_{drain} > 1$: increases over-proportionally with F_{max}

Consolidation

- $\rightarrow F_{max}/F_{drain} < 3$: Settlement
- $\rightarrow F_{max}/F_{drain} < 1$: Negligible residual heave (less than 0.01mm)

Trans

Heave

Introduction 00 Transient loading Physical model tests

Numerical simulation

Concluding remarks

Negative differential pressure

Suction force depends on F_{max}

- $ightarrow F_{max}/F_{drain} \leq$ 1: 40% of the load is sustained by the suction force
- $\rightarrow F_{max}/F_{drain} > 1$: Nonlinear increase of suction force

Dissipation during consolidation

- $\rightarrow F_{max}/F_{drain} < 2$: Positive differential pressure after loading
- $\rightarrow F_{max}/F_{drain} \geq 2$: Longer duration t_{cons} for higher loads

Numerical simulation

Concluding remarks

Main conclusions

- Great potential regarding the partially drained tensile resistance
- Cyclic tensile response depends on loading
 - → Significant number of cycles can be withstood
 - ightarrow Accumulation of negative differential pressure along with heave
- Simulation of model tests with FE is feasible
- Successfully verified FE model for transient loading

Numerical simulation

Concluding remarks

Main conclusions

- Great potential regarding the partially drained tensile resistance
- Cyclic tensile response depends on loading
 - → Significant number of cycles can be withstood
 - $\rightarrow\,$ Accumulation of negative differential pressure along with heave
- Simulation of model tests with FE is feasible
- Successfully verified FE model for transient loading

Perspective

- Further model tests
 - → Investigation of model scale
 - \rightarrow Verification and validation of FE model
- Comprehensive FE parametric study
 - \rightarrow Confirm scale effects and extrapolate to prototype scale
 - → Holistic evaluation of transient tensile loading
 - \rightarrow Provide database for calibration of an analytical approach

Numerical simulation

Concluding remarks

Thank you for your attention.

DFG Forschungsgemeinschaft

German Research Foundation