

Floating offshore wind turbines design and computational approaches

Hannover 21st of March 2019

D. WALIA, P. SCHÜNEMANN, H. HARTMANN, F. ADAM University of Rostock, Chair for Windenergy Technology

Introduction

Floating Substructures

Coupled Simulations

Physical Model Testing

Introduction

Floating Substructures

Coupled Simulations

Physical Model Testing

Chair for Wind Energy Technology (exc)

founded in 2014

Rostock

- endowed by the wind turbine manufacturer Nordex SE
- focus is industry-oriented research both onshore and offshore wind energy

Research topics at LWET are:

- floating offshore substructures
- sector coupling
- grid integration of wind power (decentralized, storage, grid codes)
- measurements (wind field, wind turbine, operation of research turbine)
- economic efficiency (weight and cost reduction, rotor blades, towers, improved control algorithms)

Introduction

Floating Substructures

Coupled Simulations

Physical Model Testing

Floating Substructures

Figure: Windparks in northern Europe I source: 4coffshore.com

Floating Substructures

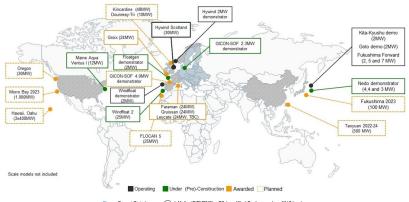


Figure: Current State | source: C J. Møller (SIEMENS) - Offshore Wind Conference June 2017 London

Floating Substructures

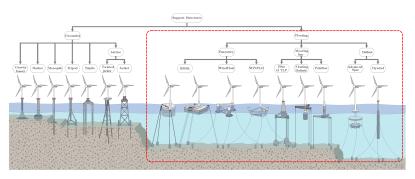


Figure: Fixed and Floating substructures! source: Silvio Rodrigues et al.

Floating Substructures

Figure: GICON-SOF - Assembly and Installation

Introduction

Floating Substructures

Coupled Simulations

Physical Model Testing

Coupled Simulations

Aero-Hydro-Servo-Elastic-Coupled simulation tools

- Simpack
- HAWC2
- (Flex5)
- Bladed
- OpenFAST
- ...

Figure: Loads on Floating Wind Turbines I source: Josh Bauer, NREL

Coupled Simulations

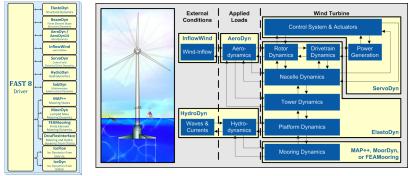


Figure: FAST Modularization I source: Bonnie & Jason Jonkman, NREL

Introduction

Floating Substructures

Coupled Simulations

Physical Model Testing

Physical Model Testing



Figure: GICON-SOF - Tank Tests

Physical Model Testing

- Scaling factor: 1:50
- Water depth: 4000 mm (200m)
- Regular Waves:
 - H_s: 40 260 mm (2 13m)
 - *T_p*: 1.13 2.26s (7.99 15.13s)
- Irregular Waves (JONSWAP):
 - H_s: 40 260 mm (2 13m)
 - T_p: 1.13 2.26s (7.99 15.13s)
- Wind:
 - 5 51 m/s
- + Wind-Only and Wave-Only tests

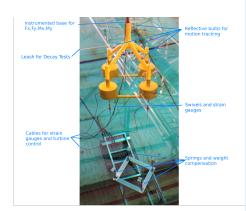


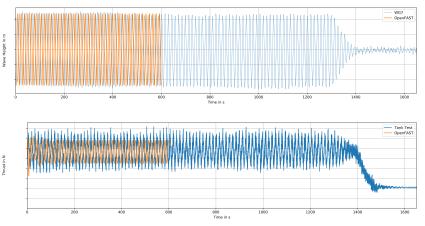
Figure: GICON-SOF - Sensors

Physical Model Testing

Video

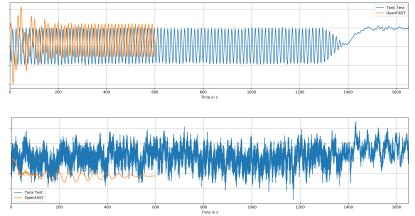
March 21st , 2019 UNIVERSITÄT ROSTOCK I FACULTY OF MECHANICAL ENGINEERING AND MARINE TECHNOLOGY

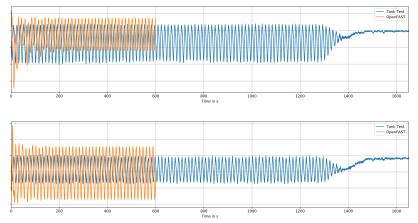
Introduction

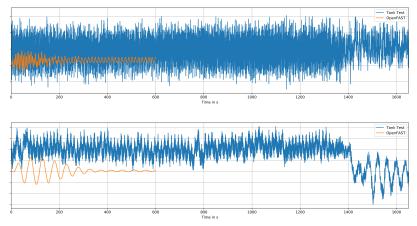

Floating Substructures

Coupled Simulations

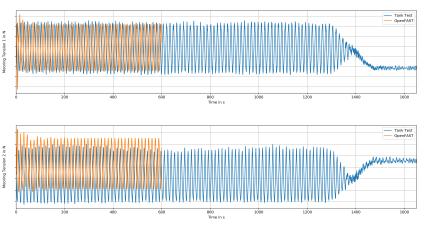
Physical Model Testing



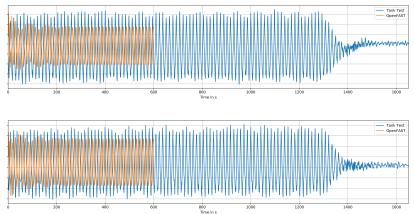


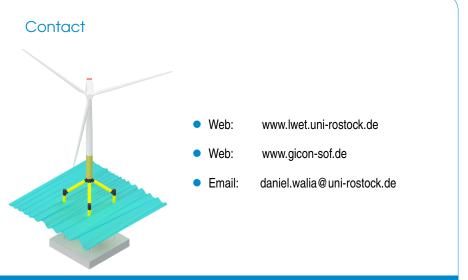


Verifying Computational Model


Roll in °

Yaw in *




Thanks to

