

PLANNED RESEARCH ON THE HYDRAULIC STABILITY OF GEOTEXTILE SAND CONTAINERS

Darshana Dassayanake Hocine Oumeraci

Leichtweiß-Institute für Wasserbau (LWI) Abteilung Hydromechanik und Küsteningenieurwesen Technische Universität Braunschweig

Photo: Maroochy groyne (after Saathof et al 2007)

7. FZK – Kolloquium, Hannover, 26. März 2009

Background

- Objectives
- Planned Experimental Investigations
- Overview of Complete Research Programme

Kronenbauwerk zur Wellenüberlaufreduktion Darshana Dassanayake, 26. 03.09

Background I

Strength / weakness	Conventional Hard Structures	GSC- Structures	
Applicability as a coastal structure to conventional coastal problems	high	high	
Resistance against wave action and coastal relates natural hazards, if properly designed.	high	high	
Adaptability to changing site conditions and morphological foundation changes.	low	high	
Total construction and life cycle cost savings (compared with conventional structures)	N/A	high	
Respond to cyclic hydrodynamic loads	moderate	high	
Pleasant and "natural" appearance	low	high	
Removability, if engineering measures did not prove successful	low	high	
deep understanding of the hydraulic processes affecting the stability of GSC-structures	high	moderate	
reliable design tools which can compromise the safety under different conditions	high	low	
Requirement of consideration of site specific conditions for design and construction	moderate	high	
Understanding of long term effect on structural durability in marine environment	high	low	
After Recio (2007)		FUNSCHINE	

Background II

Potential Failure Modes of GSC-Revetments

After Oumeraci et al (2002, 2003), Jackson (2006), Recio (2007), Deltares (2008), Lawson (2008), Oumeraci & Recio (2009)

Background III

5

Mechanical Properties of GSCs

Objectives

- Sand fill ratio and it's effect on hydraulic stability
- Other fill materials for GSCs and their effect on hydraulic stability
- Friction between GSCs and it's effect on hydraulic stability
- Further development and make simpler the <u>Recio's</u> Formulae (2007).
- To develop an operational modelling tool based on CFD model, CSD model and Empirical Results.

Proposed Tests I

2D models to find the influence of <u>fill ratio</u>, <u>type of geotextile</u> material, <u>type of fill</u> material on cyclic deformation and internal movement of sand

Hs	Тр	Water Level	Fill Ratio	Type of Fill	Type of Geotextile	Type of structure	Inclination angle of GSCs	Geometry of Container	Seaward Slope Angle
[m]	[s]	[m]	[-]	[mm]	[-]	[-]	[deg]		[deg]
Hs1	Tp1	d1	70%	D ₅₀ < 0.1	Woven1 (W1)	Single GSC	0	5:2.5:1	1:0
Hs2	Tp2	d2	80%	$D_{50} = 0.2$	Woven2 (W2)	Submerged	10		1:1
Hs3	ТрЗ	d3	85%	$D_{50} = 0.5$	Nonwoven1 (NW1)	Breakwater	45		1:2
Hs4	Tp4	d4	90%		Nonwoven2 (NW2)	Revetment		CAP	
	Tp5		100%						

Proposed Tests II

Laboratory tests to find the deformation of GSC under imposed loads

Sectional view

20

15

10

5

0

5 10

Local strain (%)

Front View

Planned Research on Hydraulic Stability of GSC Darshana Dassanayake, 26.03.09

Proposed Tests III

2D model test to quantify the lost of fine materials of a GSCs over the time under wave action

Proposed Tests IV

IAMI

2D model test with deformed container (stiff) to find the new force coefficients (C_D , C_M & C_L)

Overview of Research Programme

ILAVI

State of the Art Related to the Hydraulic Stability of Geotextile Sand Containers (GSC)

Performance of New Process-Oriented Laboratory Experiments

- 1. 2D models to find the influence of fill ratio, type of geotextile material, type of fill material on cyclic deformation and internal movement of sand
- 2. Laboratory tests to find the deformation of GSC under imposed loads
- 3. 2D model test to quantify the lost of fine materials of a GSCs over the time under wave action
- 4. 2D model test with deformed container (stiff) to find the new force coefficients (CD, CM & CL)
- 5. PIV tests to find the flow around geotextile submerged breakwaters

Numerical Modelling of GSC-Structures

Numerical simulations of GSC-structures using partially coupled hydrodynamic model (RANS-VOF model) and structural dynamic model (Coupled DEM-FEM model)

Planned Research on Hydraulic Stability of GSC Darshana Dassanayake, 26.03.09

Vielen Dank für Ihre Aufmerksamkeit

Darshana Dassanayake **MSc** Leichtweiß-Institut für Wasserbau Technische Universität Braunschweig Tel.: 0531 / 391-3988 E-mail: d.dassanayake@tu-bs.de

(Photos: www.elcorock.com)