In-line Force on a Tripod
 Foundation Structure

$8^{\text {th }}$ FZK-Kolloquium, $10^{\text {th }}$ March 2011
M.Sc. Tri Cao Mai

Dipl.-Ing. Arndt Hildebrandt
Prof. Dr.-Ing. habli. Torsten Schlurmann

Leibniz

Introduction

- GIGAWIND alpha-ventus is funded by German Ministry (BMU) to support offshore wind energy development.
- The primary objective of the project: to optimize costs for the production and installation of offshore wind turbine foundations.
- The objective of this work: to determine non-breaking wave loads (required for fatigue limit state analysis) and their coefficients.

Methodology

- Morison equation (Morison et al., 1950):

$$
F(t)=\frac{1}{2} \cdot \rho \cdot C_{D} \cdot D \cdot u(t) \cdot|u(t)|+\frac{\pi}{4} \cdot \rho \cdot C_{M} \cdot D^{2} \cdot \dot{u}(t)
$$

- Pressures around the main column of the tripod are measured.
- Wave kinematics: by Airy, Stokes $2^{\text {nd }}$ and Stokes $5^{\text {th }}$ order.
- Two estimation methods are used to get the force coefficients $\left(C_{D}\right.$ and $\left.C_{M}\right)$:
$>$ Max-min method: The coefficients are determined at points:
$\sqrt{\text { When }} \mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{x}}^{\text {max }}, \mathrm{a}_{\mathrm{x}}=0$, and/or
\checkmark When $u_{x}=0, a_{x}=a_{x}^{\text {max }}$
Least squares method: the mean-squared difference between the predicted and measured force reduces to a minimum.

Physical model (GWK) and prototype (at the test field alpha-ventus)

Model scale: $1 / 12 ; \mathrm{D}=0.5 \mathrm{~m}$
$\mathrm{H}_{\mathrm{s}}=0.5-0.71 \mathrm{~m} ; \mathrm{T}_{\mathrm{p}}=2.8-5.5 \mathrm{~s}$
Water depth $=2.5 \mathrm{~m}$; Measured level: -0.25 m

Tripod M7: D $=6 \mathrm{~m}$
Measured levels: $-1.75 \mathrm{~m},-0.75 \mathrm{~m}$ and +0.25 m LAT
Measurements since February 2010

Measurements from Alpha-ventus

Results from GWK

Results from GWK

Conclusions

- The wave force coefficients in Morison's equation are quite sensitive to the method used for estimating them.
- The least-squares method in combination with Stokes wave theories results the predicted forces fit quite well to the measured forces.
- The drag coefficient C_{D} shows significant scatter at low KC -numbers $(\mathrm{KC}<5)$.
- The inertia coefficient C_{M} shows small scatter in the range of KC -numbers = $1-20$ and its mean value $=1.59$ to 1.82 with a standard deviation $=0.71$ to 0.75 .

Thank you for your attention

