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Flooding and Erosion: southern Banda Aceh (Gleebruk: 31miles southwest of Banda Aceh)

1/2/2005




Infrastructure and Building Damage

1960, Chilean tsunami (Mw = 8.6): Isla Chiloe, Chile about 200 mortalities (left); Hilo, Hawaii 61
mortalities (right)

_ 1946 Aleutian tsunami in Hilo, Hawaii. 96



Debris Flows and structure damage
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2004 Sumatra tsunamis: Banda Aceh, Indonesia 1983 Sea of Japan Tsunami




December 26, 2004 Indian Ocean Tsunamis
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General Characterization of Tsunamis in the Nearshore
and Onshore Region

Breaking waves containing different time and length scales
Turbulent flows
Sediment (and debris) laden flows

3D flows strongly affected by bathymetry, topography, and
surface conditions



Present state of modeling tsunami in nearshore
and onshore environment

Non-linear Shallow Water Equations
in Cartesian Coordinates:
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¢ = free surface elevation
P = depth integrated volume flux in the x- direction

Q = depth integrated volume flux in the y- direction
H = total water depth

Bottom Frictional stress:

g 2
= H10/3 P(P2+Q )1/2

-2
y= |_?10/3 Q(P2 +Q2)1/2

n = Manning's coefficient



Other higher-order depth-integrated wave equations
(Lynett & Liu 2002, Proc. Roy. Soc. London)

v
g = a/lh,
u = (hy/2)

Continuity Equation (Dimensionless)

1

—H +V-(Hu,)+O0(x" e’ &', &° ") = O (1)
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Some Important Length- and Time-scales for Submarine
Earthguake Generated \Waves

Fault area (Width x Length)
— 1960 Chilean tsunami: 200km x 800km
— 1964 Alaskan tsunami: 100km x 700km
— 2003 Algerian tsunami: 20km x 36km
— 2004 Sumatra tsunami: 200km x 1200km
Maximum fault displacement (dislocation)
— 1960 Chilean tsunami: 24 m
— 2003 Algerian tsunami: 1m
— 2004 Sumatra tsunami: 6 m

Resulting in an initial surface profile mimicking the seafloor deformation
with a typical wavelength 4 ~ O(10 — 100 km) and an amplitude A ~ O(1 -
10 m). For a typical water depth h ~1 -4 km,

£=A/h~0(@0° - 25x10"), u =(h/2) ~0@0" -10")
U =¢/u” ~0(0"-25x10")

The linear, non-dispersive wave theory seems is suitable to describe the
Initial propagation of seismically generated tsunami.



In the coastal region the wave amplitude and the wavelength
must be rescaled according to water depth:

Ach™ Aoch e=Alhoch™* y=h/Aoch”
Ur :g/ﬂZ OCh—9/4

This suggest that as the tsunami propagates into the coastal region, the importance
of the nonlinearity will increase and that of the frequency dispersion will decrease
with the decreasing water depth. Hence, in certain coastal region the Boussinesq
wave theory might be necessary. However, in a very shallow depth, the
nonlinearity dominates and the nonlinear shallow water wave theory becomes more
adequate.



Choice of models based on the dispersion relationship
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What Is the limitation of the linear and non-dispersive wave theory?

By examining the validity If Ur u O(l)’ (g / h)mt i (5ﬂ)_1;
of the perturbation

solution for the 1D KdV ifU [ O@Q), (g/ h)"t0 .

equation, we know that

The maximum distance is X/ h ~ (g / h)"*t

Choice of Approximate Theories for Modeling Tsunami Propagation

U, T =t\/g/h Approximate Equation
0O 1 0 (ep)™ Linear nondispersive
~ 0 (eu)™ N on-linear nondispersive
O 1 0 u’® Linear nondispersive
0 O (u?) Linear dispersive
1 0 (1) (ep)®0 0 u° Linear dispersive
0 0 (esp)’ Nonlinear dispersive

Note that the importance of the nonlinearity could be over-estimated
Because of the 1D analyses.



Example 1 For Chilean tsunami h=4 km, A=6 m, A =200 km,
£=15x10"°, 4* =4x10"*,U, =3.75.
Thus, t0 0.66x10°sec =183hr and x [ 1.32x10°km.

Example 2: For Algerian tsunami h=2 km, A=1m, A =20 km,
£=2x10%, 4°>=10%,U, =0.2.
Thus, t /2 x10%sec=3.93hrand xJ 2x10°km.




Validation of Runup Algorithm

(Lynett, Wu and Liu 2002, Coastal Engineering)

Runup of solitary wave around a
circular island

— Experimental data taken from Liu
etal. (J.F.M. 1995)

Physical setup:
— Still water depth =0.32 m
— Slope of side walls = 1:4
— Depth profile >

Numerical simulation of conical island
runup:

— Wave amplitude = 0.028 m
— Still water depth = 0.32 m
— Beachslope =1:4

— Dx=01m
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3D animation of runup of solitary wave around a circular island
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Validation of Runup Algorithm
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1960 Chilean Tsunami

The epicenter of the 1960 Chilean earthquake was located about 100 km offshore of the
Chilean coast. The fault zone was roughly 800 km long and 200 km wide, and the
displacement of the fault was 24 m. The orientation of the fault was N10 E. The focal
depth of the slip was estimated at 53 km with a 90 degree slip angle and a 10 degree dip
angle. Using these estimated fault parameters, we can calculate the initial free-surface
displacement (Mansinha and Smylie, 1971). The wavelength of the initial tsunami form
was roughly 1,000 km and the wave height was roughly 10 m.



1960 Chilean Tsunami Inundation in Hilo Bay
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Figure 4-10: The comparison of maximum inundation area. Figure 4-12 (c). The snapshot of velocity distribution (time = 15 hr 20 min).



Some common difficulties in using depth-integrated wave
equations

* Most of numerical algorithms are dissipative, especially the moving
shoreline algorithms;

e Most of models do not include wave breaking;

* Most of models specify bottom friction coefficients and wave breaking
parameters empirically with limited validation;

» Depth-integrated wave equations can not adequately address the wave-
structure interaction issues.

Other open issues

» Coupling the hydrodynamic models with sediment transport models
e Coupling the hydrodynamic models with debris flow models
» Coupling the hydrodynamic models with soil (foundation) dynamic models



3D/2D Numerical Modeling of Tsunamis in Nearshore Environment
and Their Interaction with Structures

Turbulence Models
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breaking wave overtopping caisson at t= 0.05

turbulence intensity
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Experiments and Numerical Simulations of Solitary Wave
acting on a Submerged-Filter-Reef

Experimental Set-Up
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Figure 1: Experimental Set-UP

Mesh 1: cells with
variable size

Mesh 2: cell
size 2mm x2mm

variable size

Mesh 3: cells with
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Figure 3: Computational Domain during the Model Tests
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Simulation of a Dam Break Bore interacting with a square cylinder
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Force (N)

40

2

T T

— Non-Linear k-2

LES
NS
Lab1
Lah2
Lah3
Lah4

1 L L L

-40
0

0.5 1 1.5 2
fime {sec)

Horizontal wave force on the cvlinder

Vorlicity vector al t = 0.74 5

Vorticity field

25

y (m)

08
048
LE ]
a5
& ]
18 y (31
144 [
128 a5
L T #" . " as
" "
e N T
wien) Time = 035s
0E
n4s
L
a5
[]
Bl
18 i r . (3]
144 o=
12 P 03
ST i nas
&)
M2 e ) 0 e
egm) Time = 03
-
]
(3N
Toa
T nus
u. s o

gl Time = 107 %

Turbulence kinetic energy






3D Landslide Generated Tsunamis
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Concluding Remarks

 For most of distance tsunamis, linear shallow water wave equations are
adequate for modeling tsunami propagation in ocean basin. In some cases,
linear dispersive wave equations might be required.

* In the inner continental shelf region and the nearshore regions, nonlinear
shallow water equations might be necessary. However, wave breaking and
other dissipative processes need to be better understood and
parameterized to be used in the NSWEs.

3D RNS models or LES models are needed to investigate tsunami-
structure interactions as well as other nearshore processes, including
sediment transport and debris flows.

* 3D models can be coupled with 2D SWE and NSWE or Boussinesq-type
wave equations.

» 3D results can yield the parameters needed in 2D models.



Improved Linear Dispersion Relationship
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Momentum Equation (Dimensionless)
u.+eu -Vu +Vg +
;ﬁ{zz—jv(v U )+z2,VvQ +z [zV(V-u )+ ZO,VQ]} +
e [QVQ -V¢Q, +(u, - Vz, VQ+2,V(u, -vQ)]+

ZZ

> v[ua-v(v-ua)]}+

gw{zxu,vza)v(v-uaw

2 2

E° U V{iz V-um—cjua-VQ+§QV-ua}+

EWV{iZ (Vu, Y —u, V(v -ua)]} =0 (u")

where : Q =V~(hua)+i
E

Back to
Main Slide



Sediment deposit by tsunamis
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