Tsunami Load Determination for On-Shore Structures

Harry Yeh Oregon State University

Building survival

Vertical Evacuation to Tsunami Shelters

How can we estimate the tsunami forces on such onshore structures?

Force Category in the Present Codes City and County of Honolulu Building Code (2000)

- Hydrostatic Forces
- Buoyant Forces
- Hydrodynamic Forces
- Surge Forces
- Impact Forces
- Breaking Wave Forces

Wave breaking at the shore

A collapsing breaker resulted from an undular bore. (Yeh, et al. 1989) Typical when:

- steep beach slope
- narrow continental shelf

A sketch of Scotch Cap Lighthouse (1946 Aleutian Tsunami)

Some Considerations

Tsunami shelters are located on land some distance away from the shoreline.

Tsunami shelters are needed in the areas of relatively flat terrain where natural high-ground safe havens are not accessible.

- Formation of a surge may be the most likely flow condition.
- Wave breaking takes place offshore. The only exception is the collapsing breaker type, which occurs right at the shoreline on a steep-slope beach.

We will not consider wave-breaking force

Force Category in the Present Codes

- Hydrostatic Forces
- Buoyant Forces
- Hydrodynamic Forces
- Surge Forces
- Impact Forces
- Breaking Wave Forces

Hydrostatic Force

It is usually important for a 2-D structure such as seawalls and dikes, or for evaluation of an individual wall panel, but not for buildings

$$F_{h} = p_{c} A_{w} = \rho g \left(h_{\max} - \frac{h_{w}}{2} \right) b h_{w} \quad \text{for } h_{\max} > h_{w},$$

else $h_{\max} \to h_{w}$

- p_c is the hydrostatic pressure at the centroid of the wetted portion of the wall panel,
- A_w is the wetted area of the panel
- h_{max} is the maximum water height above the base of the wall
- h_w is the height of wall panel

Buoyant Force

The buoyant forces act vertically through the center of mass of the displaced volume

$$F_B = \rho g V$$

- Buoyant forces are a concern for wood frame buildings, empty above-ground and below-ground tanks.
- and, for evaluation of an individual floor panel where the water level outside is substantially higher than the level inside. (Lesson learned from Hurricane Katrina)

- Case-by-case evaluation for hydrostatic force and buoyancy forces on an individual wall panel and a floor panel and alike.
- We only need the water depth *h* to compute the hydrostatic forces, which is readily estimated from the inundation maps

Force Category in the Present Codes

- Hydrostatic Forces
- Buoyant Forces
- Hydrodynamic Forces
- Surge Forces
- Impact Forces
- Breaking Wave Forces

Hydrodynamic Force

When "steady" water flows around a building (or structural element or other object) hydrodynamic loads are applied to the building

$$F_D = \frac{1}{2} \rho C_D A u^2$$
 Drag Force

Width to Depth Ratio (w/ds or w/h)	Drag Coefficient Cd	
From 1 - 12	1.25	
13 - 20	1.3	
21 - 32	1.4	
33 - 40	1.5	
41 - 80	1.75	
81 - 120	1.8	
> 120	2	

(FEMA CCM)

Hydrodynamic Force

$$Force = \frac{1}{2} C_d \rho A_f u^2 \propto b h u^2$$

h: water depthu: flow velocityb: breadth

Laboratory Data of Tsunami Force on a Squire Column: C_d

Force Category in the Present Codes

- Hydrostatic Forces
- Buoyant Forces
- Hydrodynamic Forces
- Surge Forces
- Impact Forces
- Breaking Wave Forces

Surge Force (present codes)

Surge forces are caused by the leading edge of a surge of water impinging on a structure

$$F_s = 4.5 \rho g h^2 b$$

$$\frac{F_s}{b} = \frac{1}{2}\rho g h^2 + \rho u^2 h: \quad u = 2\sqrt{gh}$$

The identical approach by the Building Center of Japan

h is the surge height -- how can we determine?

Ramsden, 1993

Comparison of the experimental a) wave profile; b) runup; c) pressure head; and d) force due to a strong turbulent bore and a dry bed surge (after Ramsden, 1993)

Force Category in the Present Codes

- Hydrostatic Forces
- Buoyant Forces
- Hydrodynamic Forces
- Surge Forces
- Impact Forces
- Breaking Wave Forces

Impact Force

Impact loads are those that result from debris such as driftwood, small boats, portions of houses, etc., or any object transported by floodwaters, striking against buildings and structures

Lincoln City, Oregon

Driftwood becomes hazardous

Impact Force (present codes)

$$F_I = m \frac{du}{dt} = m \frac{u_I}{\Delta t}$$

Type of construction	Duration (t) of Impact (sec)	
	Wall	Pile
Wood	0.7 - 1.1	0.5 - 1.0
Steel	NA	0.2 - 0.4
Reinforced Concrete	0.2 - 0.4	0.3 - 0.6
Concrete Masonry	0.3 - 0.6	0.3 - 0.6

(FEMA CCM)

This is based on the impulse-momentum approach:

$$I = \int_0^\tau F \, dt = d(m \, u); \quad \tau \to 0$$

Relevant Literature

- ASCE 7-02
 - ASCE Standard. 2003. Minimum design loads for buildings and other structures. SEI/ASCE 7-02.
- City and County of Honolulu Building Code (CCH, 2000)
- Matsutomi
 - J. Hydr., Coastal, Envr. Engrg., 621, 1999 & Tsunami Engineering Tech. Rep., 13, 1996
- Ikeno, et al.
 - 2001, 2003. Impulse Force of Drift Body
- Haehnel and Daly
 - 2002. USACOE Report, ERDC/CRREL TR-02-2

ASCE 7-02 (2003)

$$F = \frac{\pi m u C_I C_O C_D C_B R_{\max}}{2\Delta t}$$

- *m*: the debris mass,
- *u:* the impact velocity of object,
- C_i : the importance coefficient,
- C_o : the orientation coefficient,
- C_D : the depth coefficient,
- C_B : the blockage coefficient,
- R_{max} : the maximum response ratio for impulsive load
- Δt : the impact duration: $\Delta t = 0.03$ sec is recommended
 - City and County of Honolulu Building Code (2000) recommends $\Delta t = 1.0$ sec for wood construction, $\Delta t = 0.5$ sec for steel construction, and $\Delta t = 0.1$ sec for reinforced concrete
 - FEMA CCM, $\Delta t = 0.2 \sim 1.1$ sec

Matsutomi: J. Hydr., Coastal, Envr. Engrg., 621, 1999 & Tsunami Engineering Tech. Rep., 13, 1996

• Impact force evaluation: $F = -M \frac{dV}{dt} \qquad \int_{0}^{\Delta t} F(t) dt = C_M M V_0$

$$\frac{F}{\gamma_w D^2 L} = 1.6 C_M \left(\frac{u}{\sqrt{g D}}\right)^{1.2} \left(\frac{\sigma_f}{\gamma_w L}\right)^{0.4}$$

- Specifically for lumber impact
- Using small-scale laboratory experiments, $C_M = 1.7$ ($C_M = 1.9$ for steady flows)
- Use large-scale "dry" experiments,
 - u: impact velocity
 - $-\gamma_w$: specific weight of lumber
 - $\sigma_{\rm f}$: yield stress of lumber (\approx compressive strength) ~ 20 MPa
 - D: diameter of lumber
 - L: length of lumber

Matsutomi's work

表一2 流木諸元

D (cm)	L (cm)	L/D	W (gf)
4.8~12	38.4~160	8, 12, 16	305~8615

図-3 空中での流木衝突実験装置の概略

Haehnel and Daly, 2002

Lumber impact

$$m_1 \ddot{x} + \hat{k} x = 0 \implies x = u \sqrt{m/\hat{k}} \sin\left(t \sqrt{\hat{k}/m}\right)$$

$$F = \hat{k} x$$
 $F_{\text{max}} = Max. \langle \hat{k} x \rangle = u \sqrt{\hat{k} m}$

Experiments by Haehnel & Daly

Figure 3. Load frame used in the basin tests.

Constant Stiffness Approach:

$$F_{\max} = Max.\langle \hat{k}x \rangle = u\sqrt{\hat{k}m} \approx 1550 u\sqrt{m}$$

From their experiments, the effective constant stiffness is **2.4 MN/m** (but no flow in their experiments)

Impulse-Momentum Approach:

$$F_{\rm max} = \frac{\pi}{2} \frac{u m}{\Delta t} \approx 90.9 u m$$

The impulse-momentum approach reduces to the constant stiffness approach by setting

$$\Delta t = \frac{\pi}{2} \sqrt{\frac{m}{\hat{k}}}$$

Work-Energy Approach:

$$F_{\max} = \frac{u^2 m}{\Delta x} \approx 125 m u^2 + 8000$$

The work-energy approach reduces to the constant stiffness approach by setting

$$x = u \sqrt{\frac{m}{\hat{k}}}$$

Λ

Comments

- Uncertainty may be resulted from the fact that the prediction models are based on the empirical scaled-down (and small) data.
- All of the previous works are for impact of a relatively small water-borne missile, e.g. a lumber log.
- No consideration was made for impact of a large missile such as a ship.

Comments

- Different relations based on the model:
 - Constant Stiffness Approach $\Rightarrow F \propto u \sqrt{m}$ n = 0.50
 - Impulse-Momentum Approach $\Rightarrow F \propto u m$
 - Work-Energy Approach \Rightarrow $F \propto u^2 m$
 - Ikeno et al. (2003) \Rightarrow $F \propto u^{2.5} m^n$ $n \approx 0.58$
 - Matsutomi (1999) \Rightarrow $F \propto u^{1.2} m^n$ $n \approx 0.66$

Impulse-Momentum Approach: $\Delta t = \frac{\pi}{2} \sqrt{\frac{m}{\hat{k}}}$ Work-Energy Approach: $\Delta x = u \sqrt{\frac{m}{\hat{k}}}$

Summary & Recommendations

- Forces on a building examined for a tsunami shelter.
 - Hydrodynamic force with $C_D = 2$.
 - Surging force may not be important, but if we consider bore formation, this can be taken into account by using $C_D = 3$ instead of 2.

$$F_D = \frac{1}{2}\rho C_D b h u^2$$

- Impact force can be evaluated by the "modified" constant stiffness approach with an appropriate value of effective stiffness k, and the added mass coefficient $C_M (\approx 2)$. k = 2.4MN/m was recommended for a lumber

$$F_{\max} = C_M u \sqrt{\hat{k} m}$$

Recommendations - continue

- Need the design values of h, u, hu^2 at the site of interest. Note that: Max (hu^2) \neq Max (h) × Max (u^2)
 - Obtain the data from detailed numerical simulations with a very fine grid size in the runup zone ($\Delta < 10$ m).
 - As for a guideline, use of the analytical solutions for 1-D runup on a uniformly sloping beach.

A snap shot of numerical simulation

Available inundation map

Maximum hu² distribution in the runup zone

(analytic solution for 1-D runup on a uniformly sloping beach)

To obtain the design values of h, u, hu^2 at the site of interest

Long-Wave Runup on a Plane Beach Nonlinear Problem

- Carrier and Greenspan (1958)
- Carrier, Wu, and Yeh (2003) -- Analytic-Numeric Hybrid Approach

The fully nonlinear shallow-water wave $\begin{bmatrix} u' (\alpha x' + \eta') \end{bmatrix}_{x'} + \eta'_{t'} = 0,$ $u'_{t'} + u' u'_{x'} + g \eta'_{x'} = 0,$

Scaling:

$$u' = \sqrt{g\alpha L} u; \quad \eta = \alpha L \eta; \quad x' = L x; \quad t' = \sqrt{L \alpha g} t$$
$$\left[u \left(x + \eta \right) \right]_x + \eta_t = 0,$$
$$u_t + u u_x + \eta_x = 0.$$

Introducing the distorted coordinates q and λ such that:

$$\lambda = t - u; \quad q = x + \eta$$

The transformation yields:

$$\begin{cases} (q u)_q + \left(\eta + \frac{u^2}{2}\right)_{\lambda} = 0, \\ u_{\lambda} + \left(\eta + \frac{u^2}{2}\right)_q = 0. \end{cases}$$

$$\psi = \eta + \frac{u^2}{2}$$
 $\sigma = \sqrt{q} = \sqrt{x + \eta}$

$$4\sigma\psi_{\lambda\lambda} - (\sigma\psi_{\sigma})_{\sigma} = 0$$
 where $\psi = \eta + \frac{u^2}{2}$

The same form as the one by Carrier-Greenspan (1958). For convenience, we introduce the variable φ :

$$\psi = \eta + \frac{u^2}{2} = \varphi_{\lambda}; \quad u = -\frac{\varphi_{\sigma}}{2\sigma}; \quad \eta = \varphi_{\lambda} - \frac{\varphi_{\sigma}^2}{8\sigma^2}$$

$$4\sigma\varphi_{\lambda\lambda}-(\sigma\varphi_{\sigma})_{\sigma}=0$$

Initial Conditions at $\lambda = t - u = 0$:

$$\varphi(\sigma, 0) = P(\sigma),$$

$$\varphi_{\lambda}(\sigma, 0) = F(\sigma),$$

$$P(\sigma) = -\int_{0}^{\sigma} 2\sigma' u(\sigma', 0) d\sigma', \text{ and } F(\sigma) = \eta(\sigma, 0) + \frac{u^{2}(\sigma, 0)}{2}.$$

Summary

$$4\,\sigma\varphi_{\lambda\lambda}-(\sigma\varphi_{\sigma})_{\sigma}=0$$

$$\varphi(\sigma,\lambda) = 2\left\{\int_{0}^{\infty} F(b) G(b,\sigma,\lambda) db + \int_{0}^{\infty} P(b) G_{\lambda}(b,\sigma,\lambda) db\right\}$$

With ICs: $P(\sigma) = -\int_{0}^{\sigma} 2\sigma' u(\sigma',0) d\sigma'$, and $F(\sigma) = \eta(\sigma,0) + \frac{u^2(\sigma,0)}{2}$.

$$\psi = \eta + \frac{u^2}{2} = \varphi_{\lambda}; \quad u = -\frac{\varphi_{\sigma}}{2\sigma}; \quad \eta = \varphi_{\lambda} - \frac{\varphi_{\sigma}^2}{8\sigma^2}$$

$$\lambda = t - u; \quad \sigma = \sqrt{x + \eta}$$

The initial wave form of a Gaussian shape

$\phi(\sigma, \lambda)$ for the Gaussian shaped initial displacement

Water-surface plot for the Gaussian shaped initial displacement

Water-surface profile at t = 1.0

Water-depth variations: q

Water velocity: u

Momentum Flux (Fluid Force) $\propto h u^2$

Initial Waveforms

Fluid Forces

Maximum force distribution from the maximum runup

X/L from the maximum runup

Maximum hu² distribution in the runup zone

(analytic solution for 1-D runup on a uniformly sloping beach)

Hydrodynamic and Surge Forces

- Hydrodynamic force with $C_D = 2$.
- Surging force may not be important, but if we consider bore formation, this can be taken into account by using $C_D = 3$ instead of 2.

Impact Force – max. u

Impact force can be evaluated by the "modified" constant stiffness approach with an appropriate value of effective stiffness k, and the added mass coefficient C_M (≈ 2). k = 2.4MN/m was recommended for a lumber.

$$F_I = C_M u \sqrt{\hat{k}m}$$

Bore Runup Process

Analytical Solution to Determine u_{max}

Maximum flow-speed *u* distribution in the runup zone: at the leading tongue of a surge front where the depth d = 0.

Floating debris with a finite draft

Nagappattinam, India, 2004

Analytical solution to determine u_{max} for a floatable debris with a finite draft

The upper limit of flow-speed u for the depth d: d can be the draft of a floating debris.

For bore runup, based on Shen and Meyer (1963), Peregrine and Williams (2001) presented:

$$\begin{cases} \eta = \frac{1}{36\tau^2} \left(2\sqrt{2}\tau - \tau^2 - 2\zeta \right)^2 \\ \upsilon = \frac{1}{3\tau} \left(\tau - \sqrt{2}\tau^2 + \sqrt{2}\zeta \right) \end{cases}$$

where
$$\eta = d/R$$
; $\upsilon = \frac{u}{\sqrt{2gR}}$; $\tau = t \alpha \sqrt{g/R}$; $\zeta = Z/R$

- R = maximum runup elevation.
- z = ground elevation
- d =flow depth
- d/R = (1) 0, (2) 0.0025, (3) 0.01, (4) 0.02, (5) 0.04, (6) 0.06, (7) 0.08,(8) 0.10, and (9) 0.12.

Example

- Maximum runup height R = 10 m.
- Beach slope = 1/50 (= 0.02)
- Location of the shelter 100 m from the shoreline (z = 2 m), and the shelter breadth b = 10 m.
- Drift wood -- mass = 450 kg; effective stiffness $k = 2.4 \times 10^6$ N/m
- Shipping container -- mass = 30,000kg; 12.2m $\times 2.44$ m $\times 2.59$ m
- $h_{max} = 8 \text{ m}$
- $\rho = 1025 \text{ kg/m}^3$ for sea water

• Hydrodynamic and surge forces:

$$(hu^{2})_{\max} = g R^{2} \left(0.125 - 0.235 \frac{z}{R} + 0.11 \left(\frac{z}{R} \right)^{2} \right) = 80.8 m^{3} / \sec^{2}$$

$$F_{d} = \frac{1}{2} \rho C_{d} B \left(hu^{2} \right)_{\max}$$

$$= \frac{1}{2} \left(1025 kg / m^{3} \right) (3.0) (10 m) \left(80.8 m^{3} / \sec^{2} \right)$$

$$= 1240 kN$$

• Impact forces (drift wood):

$$u_{\rm max} = \sqrt{2 g R \left(1 - \frac{z}{R}\right)} = 12.5 \, m/{\rm sec}.$$

$$F_{i} = C_{m} u_{\max} \sqrt{km}$$

= 2.0(12.5 m/sec) $\sqrt{(2.4 \times 10^{6} N/m)(450 kg)}$
= 822 kN

• Impact force (shipping container):

draft *d* is:
$$d = \frac{W}{\rho A_{box}}$$

= $\frac{30000 \, kg}{(1025 \, kg/m^3)(12.2 \, m \times 2.44 \, m)} = 0.98 \, m$

At the location of the shelter site, $\zeta = z/R = 0.2$, and the flow depth, d/R = 0.098. The figure shows u_{max} along the limit curve at $\zeta = 0.18$. Hence, the maximum velocity is:

$$u_{\rm max} = 0.18 \sqrt{2 g R} = 2.5 \, m/{\rm sec}$$
.

$$F_{i} = C_{m} u_{\max} \sqrt{km}$$

= 2.0(2.5 m/sec) $\sqrt{(2.4 \times 10^{6} N/m)(30000 kg)}$
= 1340 kN

1) d/R = 0, 2, 0.0025, 3, 0.01, 4, 0.02, 5, 0.04, 6, 0.06, 7, 0.08, 8, 0.10, and 9, 0.12