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Breaking Wave Impact on a Slender Cylinder

Jan Wienke1, Uwe Sparboom2 and Hocine Oumeraci3

Abstract

Large scale experiments have been conducted in the LARGE WAVE
CHANNEL of the Forschungszentrum Küste (Coastal Research Centre) in Hannover
to investigate the loads acting on a slender circular cylinder attacked by a breaking
wave. The wave kinematics, the impact and the cylinder's response were measured
simultaneously. For the load measurement two independent methods were used. On
the one side pressures were measured and on the other side forces were determined at
the bearings. Analysing the data a theoretical description for the two-dimensional
impact is confirmed and peak values for the three-dimensional impact are obtained. It
is shown that the commonly used calculation method for the impact force fails
because the duration of impact is overestimated.

Introduction

Wave forces on slender cylinders are usually calculated by the Morison
equation as a sum of the drag and the inertia force FD and FM which are considered
as quasistatic:
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Looking at breaking waves the Morison equation must fail since the so
calculated forces vary in time with the wave period whereas the impact due to wave
breaking is of short duration. This impact cannot be considered by modifying the
coefficients CD and CM in the Morison equation or by simply including a correction
factor. Instead, an additional force must be introduced, so that the total force is
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obtained as a sum of the so called quasistatic force calculated by the Morison
equation and the impact force FI.

IMD FFFF ++= (2)

The quasistatic force has often been examined and the Morison equation is a
highly recognized tool for the calculation of this force. However, the impact force
has yet been investigated only in a few test. Therefore, the impact force is the main
subject of the recent investigations.

For the calculation of the impact force on slender cylinders, usually the
method of von Karman is used (von Karman, 1929). As shown in figure 1(a), the
cylinder is approximated by a flat plate with a width equal to the width of the
immersed part of the cylinder at each instant of the impact. The force on the plate can
be calculated by considering the potential flow below the plate and integrating the
pressures calculated by the Bernoulli equation. The velocity of water vertical to the
cylinder axis is constant for each instant and equal to the wave celerity C for a
breaking wave. Applying the method of von Karman for the whole time of the
impact (i.e. until the radius of the cylinder is immersed), the calculated line force
decreases linearly with time. The line force is plotted in figure 3(c) (dashed line) and
is given in equation 3 where ρ means the density of water and Cs the slamming
coefficient.
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Von Karman's method is related to a cylinder of infinite length, i.e. the same
force is acting at every part of the cylinder, that is the two-dimensional line force.
Applying the method for breaking wave impact the two-dimensional force must be
integrated over the height of the impact area as shown in figure 1(b). It was proposed
that this height should be equal to λ multiplied with the maximum elevation of the
wave at breaking ηb (Goda et al., 1966 and Wiegel, 1982). The parameter λ, called
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Figure 1. Application of von Karman's model to breaking wave impact on slender
cylinders.

(a) Von Karman's model (b) Breaking wave impact

λ.ηb = height of impact area
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curling factor, depends on the breaker type.

bsI CCRF ηλρ ⋅⋅⋅⋅⋅= 2 (4)

Experimental set-up and procedure

The tests were carried out in the LARGE WAVE CHANNEL of the
Forschungszentrum Küste in Hannover. This channel has an effective length of
309 m, a depth of 7 m and a width of 5 m. For the tests, the still water level was
around 4 m. A sketch of the test set-up is given in figure 2. The test cylinder was
installed on the flat bottom of the channel in a distance of 111 m from the wave
paddle. Wave breaking was induced by superposition of several waves with different
frequencies. So called Gaussian wave packets were used (Bergmann, 1985). These
packets converge up to the point of concentration. At that location the wave packet
becomes very steep and breaking must continue. The maximum elevation of the
wave packets next to the point of concentration was around 2 m. For the tests the
point of concentration was focussed in front of the cylinder and was varied over a
certain distance.

The test cylinder is made of steel, has a length of 7.4 m and a diameter of
0.7 m. It is fixed at the bottom on the channel bed and at the top at a traverse
structure. At the two bearings there are strain gauges installed to measure the total
force in wave direction as the sum of the forces at the two bearings. Furthermore,
55 pressure transducers are installed in the cylinder. Some are installed in the front
line and some others around the circumference of the cylinder.

15 wave gauges were installed in the wave channel to measure the elevation
of the wave packets and to determine the wave celerity next to the point of
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Figure 2. Experimental set-up and details of the test cylinder.
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concentration. It was around 6 m/s. The water particle velocity was measured with 10
current meters at different levels. Comparing the measured maximum horizontal
particle velocity of one test with the respective wave celerity, the equality of these
two speeds was confirmed. So the dependence of the impact force on the square of
the wave celerity is justified (see equation 3).

The generated wave packets are quite similar for each test. The celerity of the
breaking wave is around 6 m/s, the maximum elevation varies between 1.6 m and
2 m, the steepness is around 0.1, only plunging breaking occurs. The main parameter
being varied in the tests was the distance between the breaking location and the test
cylinder. This variation is shown in the first four columns of table 1. With each row
the varied distance is decreasing. The tests were subdivided up into 5 loading cases
which are illustrated in table 1. Loading case 1 means that wave breaking occurs far
in front of the test cylinder. Looking at loading case 2 it can be seen that the distance
has decreased while for loading case 3 wave breaking occurs immediately in front of
the cylinder. Wave breaking of loading case 4 takes place directly at the cylinder and
waves of loading case 5 do not break in front of the cylinder but at the rear. The
distinction between these cases was performed by the visual consideration of the
tests and the transition between the cases is of course continual.

2-D impact: line force

Usually line forces are obtained by the integration of measured pressures, but
in the area of impact this integration is not justified. The local and temporal
distribution of the impact pressures is not resolved by interpolating the measured
pressures for the integration. Therefore, the line forces must be determined
theoretically and the related pressures can be compared to the experimentally
determined values.

Comparing the pressures calculated with the theory of von Karman to the
pressures measured with the pressure transducers at the half circle in the height of the
wave crests (see figure 2(c)), no good agreement was found. The calculated pressures
are much lower than the measured ones and the calculated instants of immersion take
place significantly later than the measured. This is not really surprising since this
disagreement is related to the so called pile-up effect which was theoretically
predicted by Wagner (1932) but not considered in the von Karman model (figure 3).
Concerning the breaking wave impact on a slender cylinder, the differences between
the theories of von Karman and Wagner have already been reported by Tanimoto et
al. (1986).

In the same way as von Karman did, Wagner approximated the circle by a flat
plate and considered the potential flow around that plate. The force on the plate is
calculated by considering the potential flow below the plate and integrating the
pressures calculated by the Bernoulli equation. In contrast to von Karman, Wagner
took the flow beside the plate into account. Integrating this flow over the time the
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No. Load case Video records
Principle

sketch
Force-time

history
Force characteristics

1 •  wave breaking
far in front of the
cylinder

•  overcurling
breaker tongue
hits cylinder far
below wave crest
level

•  broken wave

SWL

TIME

F
O

R
C

E

•  double-peak
•  first peak is related

to impact of breaker
tongue

•  second peak due to
impact of wave front

•  analysed as single
peak, force will be
overestimated by
20%

2 •  wave breaking in
front of the
cylinder

•  breaker tongue
hits cylinder just
below wave crest
level

•  splash upward
and downward

•  breaking wave

SWL

TIME
F

O
R

C
E

•  single peak
•  highest impact force
•  due to assumption

of simultaneous
impact over the
height, force might
be overestimated by
less than 20%

3 •  wave breaking
immediately in
front of the
cylinder

•  breaker tongue
hits cylinder at
wave crest level

•  radial splash
•  breaking wave

SWL

TIME

F
O

R
C

E

•  single peak
•  assumption of

simultaneous impact
over the height is
best fulfilled

•  highest accuracy for
force evaluation is
achieved for this
case

4 •  wave breaking at
the cylinder

•  damped impact
due to cylinder
wave run-up

•  splash upward
•  partial breaking

wave

SWL

TIME

F
O

R
C

E

•  single peak
•  duration of impact

might be under-
estimated due to
cylinder wave
run-up damping the
impact

•  force might there-
fore be considerably
overestimated

5 •  no wave breaking
in front of the
cylinder

•  quasistatic force
•  breaking wave at

rear of cylinder

SWL

TIME

F
O

R
C

E

•  no impact, only
quasistatic force

•  total force obtained
directly from the
measurement at the
bearings of the
cylinder

Table 1. Classification of different loading cases.
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pile-up effect is obtained as sketched in figure 3(b). Due to this effect the instant of
immersion takes place earlier, the duration of impact decreases and the maximum
line force increases. In figure 3(c) the time history of the calculated line forces is
plotted. The line force calculated by the application of Wagner's theory is twice the
line force calculated by von Karman's theory at the instant of first contact between
water and cylinder.

That the description following the theory of Wagner is in good agreement to
the measurements can be shown by the comparison of measured and calculated
pressures at the half circle at the height of the wave crests (see figures 2(c)). In the 4
graphs of figure 4, the pressure histories are compared for seven different locations
on the half circle. The pressure transducers are installed symmetrically to the front
line A(0°) of the cylinder. So two pressure time histories at a time are expected to be
equal. The solid line is the calculated pressure time history and the dashed lines are
the measured ones. A fairly good agreement is found in this example. Only in
graph A there is a considerable deviation. This is a typical effect in the front line
(location of first contact between water and cylinder) which is caused by air
inclusion. Water compressibility cannot be observed since this effect is of such a
short duration that it is not resolved by the pressure measurement (Korobkin, 1996).

3-D impact: total force

The total force is determined independently of the pressure measurement by
force measurement at the bearings of the test cylinder. So the problems associated
with the pressure integration are avoided in this case. In figure 5 the measured total
force time histories are shown. The graph A on the left represents a typical measured
total force time history for a breaker of loading case 1 to 4 (see table 1). When the
impact takes place the cylinder starts to oscillate. So at the bearings the acting force
is not measured directly but also the response of the test cylinder is detected. The
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graph B in the middle contains a plot of the measured total force time history for a
breaker of loading case 5. The wave packet is similar to the wave packet related to
the left plot, but the breaking location is at the rear of the cylinder. So there is no
impact force acting and no noticeable oscillation of the cylinder takes place. This
force time history is equal to the quasistatic force time history. Calculating the
difference of these two plots the oscillation shown in graph A-B on the right of
figure 5 is obtained. This time history can be related to the impact force of the
breaking wave, i.e. it represents the dynamic part of the force. For analysing this plot
the acting force and the response part must be separated. This separation can be
performed by deconvolution.

The deconvolution is the inversion of the convolution. Convolution is
described by the following integral:

( ) ( ) ( ) ( ) ( )ωω iEdxxtixEtD
t

~~

0

⋅=−⋅= ∫ (5)

D is the directly recorded signal, i.e. the time history measured with the strain
gauges at the two bearings of the test cylinder. E means the excitation function, i.e.
the time history of the unknown actual acting force. The function i is the response of
the detector which represents the damped oscillation of the test cylinder. The
frequency and the damping coefficient of this oscillation are determined in

preliminary tests. E
~

 and i
~

 are the Fourier transform functions. The convolution
theorem states that the convolution integral is equal to the product of the Fourier
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transform functions. So the inversion of the convolution corresponds to a division by
a Fourier transform function. Since this function is not different from zero for the
whole domain of definition, it is obvious that the inverse function is not defined.

So the deconvolution is solved numerically to determine the actual acting
wave force E. A basic approach for the unknown function E is used. The convolution
of the approach with the cylinder’s response i is calculated and the result is compared
with the directly recorded signals D. To fit the calculated and the measured time
histories the approach is multiplied with a factor. The value of this factor is
determined by minimizing the deviation between the two time histories.

The functional dependence of the approach on time is not varied. It is
assumed that the time history of the total force is equal to the time history of the line
force shown in figure 3(c) (solid plot). This means that the force is acting at the same
time over the whole height of impact. The same assumption is used for the transition
from equation 3 to equation 4. The accuracy of this assumption is dependent on the
loading case. For loading case 3 it is best fulfilled, while for the other loading cases
the inaccuracy of the assumption must be considered as given in the last column of
table 1. Originally, the assumption of simultaneous impact is related to a vertical
breaker front. Considering the area of impact it can be shown theoretically that the
assumption is justified when the angle between breaker front and cylinder axis is
small. The pressure time histories measured in the front line of the cylinder are in
agreement with the assumption of simultaneous impact. The delay of maximum
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pressure along the front line in the area of impact is less than 20% of the duration of
impact.

An illustrative example for the determination of the actual acting force is
given in figure 6. In figure 6(a) the measured dynamic part of the force which is the
thin solid line is deconvoluted by fitting the approach (thick line) so that the
difference between the thin dashed and the thin solid lines is minimum. The dashed
line is the convolution of the approach with the cylinder's response. After the impact
force component has been determined in this way, the quasistatic force is added. The
convolution for the summed up force is calculated and compared to the measured
total force as shown in figure 6(b). The calculation procedure is completed when a
good agreement between calculated and measured time histories is achieved.

The method for the analysis of the measured total forces is summed up in
figure 7. On the left side there are the measured forces – the total force related to a
breaking wave and the quasistatic force. Through the difference of these two forces,
the dynamic force is obtained and then deconvoluted by using the theoretical
approach following the theory of Wagner. In this way the impact force is obtained
and added to the quasistatic force so that the total force acting on the cylinder would
result. For verification, this total force is convoluted with the cylinder's response and
compared to the measured total force.

Selected Results

A general overview of the results is given for all loading cases in the fifth
column of table 1. For loading case 1 typically a double peak is obtained for the
impact, for loading cases 2 to 4 only single peaks with a decreasing intensity are
yielded. Since the accuracy of the method is highest for loading case 3 the difference
in impact intensity between loading case 2 and 3 is not significant, but the intensity
of impact for loading case 4 is obviously smaller.

In figure 8 the experimentally determined values are shown. At the top the
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maximum total force is plotted for the different loading cases. The highest values, up
to almost 100 kN, are obtained for loading case 2. For loading case 3 values of more
than 80 kN are determined. The quasistatic force which is related to loading case 5 is
between 10 kN and 20 kN.

The graph below, quite similar, shows the impact force, i.e. the total force
shown above without the quasistatic part of the force. Of course for loading case 5
there is no impact force, so the value is zero. The maximum values related to loading
cases 2 and 3 are around 80 kN.

In the graph at the bottom the curling factor λ is plotted for the different
loading cases (see introduction and figure 1(b)). The height of the impact area on the
cylinder is given as λ multiplied with the maximum elevation (figure 1(b)). λ is the
quotient of the impact force shown in the middle graph and the impact line force
divided by the maximum elevation of the breaking wave. The maximum values for
the curling factor are in good agreement with the values for plunging breakers given
in literature (e.g. Goda et al., 1966 and Wiegel, 1982).

The curling factor is not only dependent on the type of breaker, but also on
the distance between breaking location and cylinder. Only for loading cases 2 and 3,
λ is maximum. For the other cases, the curling factor is lower. In these cases, the
impact is damped for example by the cylinder wave run-up (loading case 4). If the
impact does not take place at the same time over the height of impact (loading
case 1) the maximum value of the force is also reduced, as well as the curling factor.
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Figure 7. Diagram of the method for the analysis of the measured forces.
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Figure 8. Experimentally determined values for the different loading cases.
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Concluding Remarks

A theoretical two-dimensional description of the breaking wave impact force
on a slender cylinder has been experimentally confirmed. The maximum value for
this line force is twice the value commonly used. Furthermore, it is shown that the
factor which is used to transform the two-dimensional description to a three
dimensional one - the curling factor λ - is in agreement with the values given in
literature.

So it is concluded that the commonly used method for the calculation of
breaking wave impact fails for the breaking waves used in the presented experiments.
The maximum values are twice the values calculated with the commonly used
method. The pile-up effect influences both, the intensity and duration of impact and
must be taken into consideration.
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