Reduction of logistical risks of offshore operations by improved consideration of limits for ships and technicians

A. Hildebrandt, J. Landmann, J. Meyer, L. Fröhling
Content

- Logistical risks of offshore operations
 - Weather risks

- Limits of work vessels & technicians

- Core objectives of “AVIMo”

- Improved considerations
 - Wave-current basin + Field measurements + Simulations
 - Logistics tool with multi parameter implementation
Logistical Risks

- Internal Risks
 - Organization, licenses, finances, human resources, etc.
- External Risks
 - Political, social, economic, environmental, availability, etc.

RIAM: Risk Impact Assessment Modelling
- Likelihood, costs, schedule, sensitivity analysis
Logistical Risks of Offshore Operations

- **Environmental**
 - Weather condition (wind, wave, current)
 - Unexpected surface & soil conditions
 - ...

- Physical damage
- Loss
- Time
- Costs

- Decision maker’s (Investors, Insurance, Customer, ...)

Origin: Winch (2010)
Weather Risk

- E.ON, A2Sea, Aarsleff & Bilfinger Berger
 - Not safe to leave the harbor
 - No crane operations possible, especially the blade lifting parts
 - Not safe to jack-up the vessel
 - No supply via barges, e.g. foundations, material, etc.
 - No transfer from service boat onto the wind turbine

⇒ Downtime
 - Stall the offshore construction phase
 - Longer project time and more costs

Origin: Ahlgren & Grudic (2017)
Weather Risk

- Identifying weather windows
 - Likelihood
- Schedule operations
 - Transport
 - Installation
 - Maintenance
Limits of work vessels & technicians

→ Downtime

\[f(R&D, \text{climate, experience}) \]
Limits of work vessels & technicians

- **Lifting:**
 - $\approx < 10 \text{ m/s Wind}$
 - $\approx < 1.25 \text{ m Hsig}$

- **Shipping/Towing:**
 - $\approx < 5.0 \text{ m/s Hsig}$

- **Bad Weather:**
 - Stand-by
 - Evacuation
 - Safety measures
Limits of work vessels & technicians

- Influence of motion on seasickness

≈ 6 s

Origin: McCauley et al. (1976)
Core Objectives of “AVIMo”

- Operational limits due to environmental conditions are conservatively defined in guidelines (e.g. DNVGL-ST-N001)
- Project costs are sensitive to operational limits in terms of installation and maintenance costs (construction techniques, devices, time, readiness, etc.)
- The actual vessel motion or the direction of wave action is not efficiently considered for the operational limits

Risk and cost reduction by means of case-dependent operational limits
Core Objectives of “AVIMo”

- Operational limits of work vessels (and the well-being of technicians) under consideration of:
 - combined wave parameters,
 - generic ship parameters,
 - type of operation

- Demonstration of cost and risk prevention by assessing work assignments with “COAST”
Modelling of structural response

- Structural motion and response in waves

 Origin: Faltinson (1990)

- Spring-Damper System

 \((m + a)\ddot{x} + b\dot{x} + cx = f(t)\)
Modelling of structural response

- Structural motion and response in waves
Modelling of structural response

\[(m + a) \ddot{z} + b \dot{z} + cz = a\ddot{\zeta} + b\dot{\zeta} + c\zeta\]

- \(z = z_a \cos(\omega t + \varepsilon z\zeta)\)
- \(\dot{z} = -z_a \omega \sin(\omega t + \varepsilon z\zeta)\)
- \(\ddot{z} = -z_a \omega^2 \cos(\omega t + \varepsilon z\zeta)\)
- \(\ddot{\zeta} = \zeta_a e^{-kT} \cos(\omega t)\)
- \(\dot{\zeta} = -\zeta_a e^{-kT} \omega \sin(\omega t)\)
- \(\dot{\zeta} = -\zeta_a e^{-kT} \omega^2 \cos(\omega t)\)

\[z_a \{c - (m + a) \omega^2\} \cos(\omega t + \varepsilon z\zeta) - z_a \{b\omega\} \sin(\omega t + \varepsilon z\zeta) = \]

\[= \zeta_a e^{-kT} \{c - a\omega^2\} \cos(\omega t) - \zeta_a e^{-kT} \{b\omega\} \sin(\omega t)\]

- Estimation of operational limits by
 - field-, laboratory-, and numerical investigations
Reduction of logistical risks of offshore operations

Modelling of structural response

- Estimation of operational limits by field-, laboratory-, and numerical investigations
Improved Considerations

- Response Amplitude Operator (RAO)

Origin: Newman (1977)
Improved Considerations

- Case sensitive RAO

Quelle: MBM Consultancy
Core Objectives of “AVIMo”

- Industrial Partners & Technical committee
- Model tests for selected work vessels
- Vessel motion analysis & Offshore field measurements
- Effects on logistics and risk assessment => Costs
- Recommendations & Practical Applications

Reduction of logistical risks of offshore operations
Physical & Numerical modelling

- Wave generation
 - Regular waves
 - Irregular sea states

- Directional spectra
 - 5° - 175°

- Wave height:
 - max. 0.47 m
Physical & Numerical modelling

- Chosen vessel types:
 - Crew Transfer Vessel (CTV)
 - Offshore Service Vessel (OSV)
 - Jack-Up Vessel
Physical & Numerical modelling

- Num. vs Lab.
 - Analytical
 - Meshless
 - CFD
- Ext. scenarios
- Field data
Core Objectives of “AVIMo”

- Recommendations & Practical Applications
- Model tests for selected work vessels
- Vessel motion analysis & Offshore field measurements
- Industrial Partners & Technical committee
- Effects on logistics and risk assessment => Costs
- Indications of extended, vessel based, operational limits
Improved Consideration

- Wind Turbine Generator Installation
 - Modelling of project time and costs
Improved Consideration

- Wind Turbine Generator Installation
 - Modelling of project time and costs
- Time & cost estimation

\[\Delta t = f(Nr. [WTG]) \]
Improved Consideration

- Wind Turbine Generator Installation
 - Modelling of project time and costs

- Time & cost estimation

- Optimization of installation and maintenance
Summary

- Weather and soil uncertainties are the major risks for offshore operations.
- Currently, the limits are set by conservative and one-dimensional parameter.
- Field measurements, tests and numerical simulations are used to investigate multi-dimensional parameters.
- Implementation in logistics planning tool and demonstrator „COAST“
- Mitigation of risks and downtime
- Cost and risk prevention
References

- McCauley, Michael E.; Royal, Jackson W.; Wylie, C. Dennis; O’Hanlon, James F.; Mackie, Robert R. (1976): *Motion Sickness Incidence: Exploratory Studies of Habituation, Pitch and Roll, and the Refinement of a Mathematical Model*

ONP Management

Reduction of logistical risks of offshore operations

THANK YOU